leading edge technology

‘Bradford Harrison
Senior Technical Writer

Microtec provides customers with
two types of Board Support Packages
(BSPs): XRAY Debugger Monitor and
Spectra BSP.

The XRAY Debugger Monitor (XDM)
debugs single-threaded applications
that do not require an operating sys-
tem. A Spectra BSP implements the
Xtrace Monitor and Xtrace Protocol,
and supports single-threaded appli-
cations (non-OS mode debugging) or
multi-threaded applications running
on VRTX/0S (OS mode debugging).
- This article describes both types of
BSPs. However, the Spectra BSP is
more sophisticated, so it is described
in greater depth.

BSP Development Tools

Embedded systems development
requires BSPs, since commercial
microprocessor target boards typi-
cally only ship with a basic debug
monitor, which is used for boot and
initialization of the board and to
establish a serial (RS-232) connection
with a host system. The developer
must supply his own board support
services for embedded software
development.

BSPs are purchased prebuilt or are
built by the developer or by third-
party consultants. Because pre-built
BSPs, especially for custom hardware
configurations, are unavailable for
every board, embedded systems soft-
ware suppliers provide BSP develop-
ment tools to facilitate the
development of custom BSPs.

BSP development tools must support
a wide range of board and processor
configurations, and be easy to use.
The developer must have the ability
to customize his BSP to whatever

Building Board Support Packages—.

7degree is required. These BSPs pro-

vide services that support the overall
embedded systems software develop-
ment environment sold by the
supplier.

XRAY Debugger Monitor
(XDM)

To create an XDM, Microtec provides
the Monitor Configuration Tool
(MCT). This menu-driven host utility
creates a highly functional debug
monitor, which is downloaded to the
target system via the target board’s
own built-in debug monitor. The
developer then issues a go statement
to the starting address of the XDM,
and the XDM takes control of the
board, supporting all XRAY com-
mands and services for the develop-
ment of a single-tasking application.

MCT provides direct support for a
variety of target boards. BSPs gener-
ated by MCT immediately can be
downloaded and executed on the tar-
get. If the target is not directly sup-
ported by MCT, the developer must
use MCT to generate the “next clos-
est” BSP (configured for, at a mini-
mum, a processor from the same
family as the developer's board), and
alter the source code before compiling
and downloading to the target.
Microtec provides complete docu-
mentation detailing how to alter this
code, but the developer brings knowl-
edge of the processor and peripheral
devices to the task.

The XDM executable can be linked
with boot and initialization code to
provide a complete BSP package. This
BSP is programmed into PROM, elim-
inating the need for the manufac-
turer’s built-in debug monitor.

The boot and initialization code can
be written using documentation or

‘Iterative BSPBuilder

“software supplied by the board man-

ufacturer. The boot and initialization
code is often taken by the program-
mer from the supplied debug monitor
using XRAY's disassembling capabili-
ties. It is then assembled and linked
with XDM.

‘Spectra BSP

A Spectra BSP provides more services
than does an XDM. It supports and
debugs single-threaded applications
or multi-threaded applications run-
ning on an OS. The OS often is, but
need not necessarily be, VRTX/QOS.

Spectra BSP development uses
Microtec BSPBuilder development
tools and methodology, including
forms (templates), procedures, make-
files, development tests, header files,
and libraries.

The forms, procedures, and tests are”
relatively generic. Those more target ..
specific features consist of the librar-
ies supplied with BSPBuilder and the
prebuilt (binary) drivers that BSP-
Builder provides for the support of a
variety of processors and 1/0 devices.

If the developer builds a BSP for a
board that contains supported proces- . :
sors and 170 devices, then the use of
prebuilt drivers dramatically reduce
BSP development time.

BSPBuilder forms are used to create
device drivers in cases where devel-
opers do not use prebuilt drivers.
Serial, Ethernet, timer, and shared
memory drivers for a variety of pro-
cessors and I/0 devices are generated
using forms, and can be combined
with the binary drivers into a single
BSP.

Development Process

BSPBuilder BSP development is itera- 4

3

=V




leading edge technology

tive, as shown in Figure 1. Developers
begin usually with a serial driver,
though Ethernet drivers are often
developed first when there is only a
single serial port on the board. If there
are two serial ports, the developer can
retain the connection to the board'’s
debug monitor while developing the
serial driver for the other port. If there
is only a single serial port, developers
can continue to use the serial port for
the debug monitor while developing
an Ethernet device driver.

In either case, the goal is to develop a
working driver in order to build a
working Spectra BSP and establish a
working Spectra bridge: the connec-
tion between the Xtrace Daemon
running on the target, and Target
Manager, running on the host. Once a
Spectra bridge is operational, the
serial, Ethernet, or shared memory
device can be shared between Xtrace
and an application, and high-level
debugging can begin.

If they exist for the board, binary driv-
ers are used; otherwise, forms are
used to develop the drivers. In either
case, the driver is then linked with the
appropriate BSPBuilder test code,
files, and libraries using BSPBuilder-
supplied makefiles. These files and
libraries include the following:

* logio.lib — Contains modules that
implement the Logical 1/0 (logio)
layer of Spectra.

* board.c — Contains board
initialization code. board.c contains
code that handles the non-
configurable portion of board set-
up. These functions need to be
performed whether or not any of
the board's devices are installed.

devenfg.c — Defines configuration
data structures containing
information necessary to program

devices on a board. For example, a
data structure specifies the type of
device (packet or tty), clock speed,
baud rate, parity, stop bits, and
receive, transmit, and error vectors
for any given serial device. It
specifies port addresses and
functions for enabling and
disabling interrupts. For each
device, devenfg.c declares a device
descriptor and a logio method. It
also defines a function for installing
all of the devices on a board as logio
devices. The developer is required
to modify this file for her board.

boot.lib — Contains code for
initializing the target board and
bringing it to a known state after
power-up or reset. This library
contains modules that initialize
logio, create and initialize devices as
logio devices, set up a console, copy

the memory map from ROM to
RAM, check for overlaps in the
memory map, and construct the
Boot Item List.

* cpu.lib — Supports processor-
specific features. It defines cache
and MMU functions, register set
(including floating-point), and
interrupt control functions.

« packt.lib — Contains code to
support packetized communication
on a serial line used by the Xtrace
protocol. The library includes
functions to encapsulate buffered
data in a packet, compute a
checksum, compare checksums,
and extract data fromn a packet.

The executable is downloaded to the
target using the target board’s debug
monitor. The device driver is tested
using a combination of test code on

'

7 Step 1: Select a binary device driver or create a device driver using a form.

l

“Step 2: Compile the driver with supplied BSPBuilder tests and
download to the target. Execute tests.

Do another driver

Y

 Step 3: Using Xconfig, build a complete BSP that includes
all of the BSPBuilder libraries.

\J

Step 4. Download the BSP to the target and test it.

| Repeat until done

‘Figure 1. Spectra BSP Development Process

4/

=V




leading edge technology

the target and tools on the host.

If the developer has a problem with
getting the first Ethernet or serial
driver to work (there is no response
from the target at all), then the devel-
oper can use the BSPBuilder memory
console debugging feature. This
allows the developer to insert printf
statements into the driver code in
order to write diagnostics to memory.
When the driver fails, memory can be
examined using the debug monitor to
determine the cause of the failure.

Once the driver checks out, the devel-
oper then either goes onto the next
driver, or using the Spectra Xconfig
configuration utility, creates a BSP
containing the driver and the remain-
ing BSPBuilder files and libraries nec-
essary to build a complete BSP. These
files and libraries are the following:

» crt0.s — Includes all necessary code
for starting up the target board. It
defines a stack for use at start-up/
reset; initializes the program
counter and stack pointer; disables
all interrupts; flushes and
invalidates the cache (if present and
enabled); and clears RAM. If the
board comes packaged with debug
PROMs, the code in crt0.s may
closely resemble the code present in
the debug PROMs.

bootcnfg.c — Generated by Xconfig
from the template bootcnfg.tpl, this
file declares functions, constant
data, tables, boot stack, Xtrace
workspace, and other boot-related
items with configurable values.

devices.c — Generated by Xconfig
from the template devices.tpl, this
file declares a table of the board'’s
devices. For each device, the table
establishes a correspondence
between the device name (a

character string used to identify the
device) and the logio method used
to access it. The logio method is a
data structure containing pointers
to two other data structures. The
first of these defines a set of
operations valid for members of
some family of devices. The second
contains all information pertinent
to a specific instance of a device.
The device belongs to the class of
devices (timer, serial, Ethernet, or
shared memory) characterized by
the first data structure.

* vtdm.lib — Encapsulates Xtrace.
This library contains the functions
that execute as the Xtrace Daemon
(also known as the debug server) on
the target. The debug server
communicates with Target
Manager (running on the host) over
the Spectra bridge device. These
three components — debug server,
Spectrabridge, and Target Manager
— make up the Spectra debug
connection.

* router.lib — Contains functions
that route messages passed over the
Spectra bridge. This library is used
in both single-board and multi-
board configurations, and enables
an application to share the Spectra
bridge with the debug server
(Xtrace) running on the target.

The primary files customized for a
particular board are crt0.s, board.c,
and devenfg.c for board start-up, ini-
tialization, and device configuration.

The complete BSP is downloaded to
the target and tested. This BSP, with
only a single working serial or Ether-
net driver, can now be used to estab-
lish a working Spectra bridge. Over a
working bridge, the developer can
connect with Target Manager and (for
serial devices) Connection Server, and

“use the Spectra host toolset to work

'BSPBuilder Tests

—

with the BSP.

Many developers at this point opt to

create a PROM containing their BSP,

thereby eliminating the need to work
with the board's debug monitor.

The iterative development process
continues until all device drivers are
working and the BSP is thoroughly
tested. A final series of tests check the
BSP before the BSP is used to run the
OS and develop applications.

The BSPBuilder methodology imple-
ments several levels of tests, includ-
ing code to run simple character
receive and transmit tests, as well as
packet receive and transmit tests. The
hostside rstest utility is provided in
order to receive and transmit packets_-.
over a serial link to the serial driver
without the use of Connection Server,~
which requifes that a Spectra bridge
be in place. The ethertst utility,
included on most UNIX systems, tests
the Ethernet driver.

Once a driver is working properly
and a BSP has been built with the
Xconfig utility, the BSP is down-
loaded to the target, and standard
Spectra host tools are used to test the
BSP. For example, the XSH or XRAY
for Spectra debugger can be used to
check registers or to investigate mem-
ory locations using the services of the
BSP. Target Manager must be run-
ning on the host, and if over a serial
connection, Connection Server must
also be running.

BSPBuilder includes as well tests for
timer and shared memory drivers,
and a serial console test. ’l

5\~

=V




leading edge technology

S —

7 logio

Critical to Spectra BSP development
is logio. Provided as a library of func-
tions, logio.lib, logioallows devices to
be treated as classes of devices that
can be operated on by logical function
calls rather than device-specific calls.
Once created, a logio device can be
handled logically just like any other
similar device.

logio provides three critical services
for a BSP:

1. BSP interrupt handling (or the
ability to poll for them)

2. BSP initialization
Access to BSP services from appli-
cations, ISRs, and other software

Xtrace, the Spectra debug monitor,

has first claim on all interrupts. This

. capability is necessary so that a bridge

can be shared between Xtrace and an
application. logio is notified ofan
interrupt only when Xtrace makes a
call to a logio interrupt handler. The
logio default interrupt handler makes
calls to handlers for each logical event
(interrupt source) that occurs on a
vector. These logical event handlers
check what caused the interrupt to
fire and whether it was a specific
event. If the interrupt fired in
response to the event the function is
handling, the function calls the appro-
priate ISR and returns TRUE. If some
other event caused the interrupt, the
function returns FALSE.

logio initialization routines create and
delete logical devices, return device
IDs, initialize the devices, and initial-
ize pools of fixed-size buffers used to
hold data received and transmitted by
adriver.

logio also provides seven standard

functions that applications and ISRs 7

use in order to operate on a device.
These are:

* initialize
* read

* write

* getmsg
* putmsg
* control
* poll

" These standard functions are sup-

plied in four "interface” files —
serial_2.0, ether_l.o, timer_l.0, and
shmem_l.o for serial, Ethernet, timer,
and shared memory drivers, respec-
tively. Source code is also provided,
for reference only. When the driver is
created, the appropriate binary is
linked with compiled source code
developed in the appropriate driver
form. (If the developer is using a sup-
plied binary driver, then the devel-
oper does not need to work with this
code, already provided in the pre-
compiled driver.)

The driver forms — sform, eform,
tform, and vmeform for serial,
Ethernet, timer, and shared memory
drivers, respectively — provide “boil-
erplate” code for device-specific func-
tions that are coded by the developer.
There are numerous functions for
each driver developed, and they are
accessed by the seven high-level func-
tions using the Function Operations
(FOPS) table. The FOPS table contains
pointers to those developer-provided
device-specific functions just devel-
oped in the appropriate form and
compiled with the appropriate inter-
face file. Keeping the high-level inter-
face functions separate from the low-
level device-specific functions is

6\~

=V

referred to as externio.

The developer often requires the
source code provided for the interface
files in order to determine exactly
how to access the functions under
development in the forms. The forms
themselves have comments in order
to help the developer provide the
appropriate code for each device. If a
pre-compiled device driver is avail-
able for the device, in theory, the pro-
cess becomes simple, and the
developer needs only to link it with
the libraries and files described
above.

Conclusion

Further modifications are often
required once the BSP has been devel-
oped, tested. and used as a platform
in order to develop an application.
Xtrace may be removed from the BSP
and the amount of memory required
by the BSP reduced by following the
procedures described in the Configu-
ration Tool User’s Guide and Reference.

BSPBuilder currently supports the
Motorola 68K and PowerPC proces-
sor families with processor libraries
and binary device drivers. The meth-
odology, however, is generic, and
developers can use the forms and
logio calls to develop BSPs for other
processors and devices. Microtec
Consulting Services can be contacted
to help with BSP development for
custom target boards. Additionally,
Microtec provides BSPBuilder train-
ing classes.




	bsp1
	bsp2
	bsp3
	bsp4

