

Using Help | Contents | Index Back 1

Adobe LiveMotion Scripting Guide Using Help

Using Help | Contents | Index Back 1

Using Help

About online Help

Adobe Systems, Inc. provides complete documentation in the Adobe PDF Help system.
The Help system includes information on all the tools, commands, and features for both
Windows and Mac OS. The PDF format is designed for easy navigation online, and support
for third-party screen readers compatible with Windows. The Help can also be printed as a
desktop reference.

Navigating in Help

The Help will open in an Acrobat window with the bookmark pane open. If the bookmark
pane is not open choose Window > Bookmarks. You can also navigate using the
navigation bar, the index, or search the document.

At the top and bottom of each page is a navigation bar. Click Using Help to return to this
introduction. Clicking Contents, or Index will take you to that section.

The Next Page and the Previous Page arrows let you move through the pages
sequentially. Click Back to return to the last page you viewed. You can also use the
navigation arrows in the Acrobat toolbar.

Using bookmarks, the table of contents, the index, and Find

The contents of Help are shown as bookmarks in the bookmark pane. To view subtopics,
click the plus sign next to a bookmark. Each bookmark is a hyperlink to the associated
section of the Help document.

To go to the information, click its bookmark. As the information is displayed in the
document pane, its bookmark is highlighted.

You can turn highlighting on or off by selecting the Highlight Current Bookmark option
from the bookmark pane menu.

To find a topic using the table of contents:

1

Click Contents in the navigation bar at the top or bottom of any page.

2

Click a topic on the Contents page to move to the first page of that topic.

3

In the bookmark pane, expand the topic to see its subtopics.

To find a topic using the index:

1

Click Index in the navigation bar at the top or bottom of any page.

2

Click the appropriate letter at the top of the page.

You can also expand the Index bookmark, and click the letter in the bookmark pane.

3

Locate your entry, and click the page number link to view the information.

4

To view multiple entries, click Back to return to the same place in the index.

Using Help | Contents | Index Back 2

Adobe LiveMotion Scripting Guide Using Help

Using Help | Contents | Index Back 2

To find a topic using the Find command:

1

Choose Edit > Find.

2

Enter a word or a phrase in the text box, and click OK.

Acrobat will search the document, starting from the current page, and display the first
occurrence of the word or phrase you are searching for.

3

To find the next occurrence, choose Edit > Find Again.

Printing the Help file

Although the Help has been optimized for on-screen viewing, you can print pages you
select, or the entire file.

To print, choose Print from the File menu, or click the printer icon in the Acrobat toolbar.

Using Help | Contents | Index Back 3

Adobe LiveMotion Scripting Guide Contents

Using Help | Contents | Index Back 3

Contents

Introduction 4

Overview 7

Writing Scripts 14

Behaviors 26

Movie Clips 42

Movie Clip Events and Event Handlers 64

Dynamic Data 77

Script Editor 85

Debugger 94

Reference 105

Glossary 248

Legal Notices 250

Using Help | Contents | Index Back 4

Adobe LiveMotion Scripting Guide Introduction

Using Help | Contents | Index Back 4

Introduction

Overview of this guide

The

Adobe® LiveMotion™ 2.0 Scripting Guide

 is your guide to enhancing compositions
created with the LiveMotion user interface. By incorporating JavaScript code into your
compositions, you can control animations and responses to user events in ways that
would be impossible or extremely tedious to do with the user interface tools and menus
alone. If you have created behaviors in LiveMotion 1.0, you will soon recognize the power
of scripting in LiveMotion 2.0. With some practice and working with scripting language,
you are bound to be a convert.

Early sections of this guide start with some simple examples to get you started with
scripting right away. Just understanding how to create a simple composition that uses
scripts may be all you need to know. Later sections take you through more advanced
examples and cover the highlights of scripting LiveMotion 2.0 compositions.

What you should know

This guide assumes that you have an understanding of JavaScript syntax. If you do, the
transition to writing scripts should be easy. The scripts that you write are JavaScript with a
few differences to support exporting your .

liv

 file to the SWF file format. “JavaScript in
LiveMotion” on page 8 points out some of these differences.

If you need to learn JavaScript language fundamentals, such as what operators, variables,
and looping mechanisms are, you will find a wealth of publications available online and at
your local bookstore.“Where to go for more information” on page 6 lists several publica-
tions and some helpful Web sites.

Organization of this guide

This guide is organized as follows:

•

“Introduction” on page 4 acquaints you with the

LiveMotion 2.0 Scripting Guide

, tells you
what you should know before you start reading, summarizes section contents and
organization, lists all the hands-on examples and where they are located in this guide,
and provides references for additional information.

•

“Overview” on page 7 introduces LiveMotion’s authoring environment, provides a high-
level description of objects and movie clips, and points out the advantages of using
scripting in LiveMotion compositions. In addition, this section compares JavaScript in
LiveMotion with ActionScript and ECMA-standard JavaScript.

•

“Writing Scripts” on page 14 gets you up and running. It describes basic ways you can
manipulate objects through scripting. In the process, you learn where and how to add
scripts to your compositions. The chapter uses very simple scripting examples. It is

Using Help | Contents | Index Back 5

Adobe LiveMotion Scripting Guide Introduction

Using Help | Contents | Index Back 5

meant to reach everyone who will be writing scripts, including those who are very new
to scripting.

•

“Behaviors” on page 26 provides procedures for creating scripts for each of the
LiveMotion 1.0 behaviors.

•

“Movie Clips” on page 42 describes how to create movie clips manually and program-
matically, how to use the built-in movie clip methods and properties, how to create
your own movie clip methods and properties, how to reference movie clips in the
object hierarchy, and finally how to load and unload SWF files.

•

“Movie Clip Events and Event Handlers” on page 64 describes how to write [system-
based and user-generated] event handlers. This section provides several hands-on
examples showing ways to create these handlers.

•

“Dynamic Data” on page 77 describes how to create LiveMotion applications that
dynamically accept user input and respond with the results of user queries within the
LiveMotion movie clip or browser window.

•

“Script Editor” on page 85 introduces and explains in detail how to use the Script Editor
features to help you with writing scripts

•

“Debugger” on page 94 describes the Debugger and Console window in detail.

•

“Reference” on page 105 is the detailed reference to writing scripts. The chapter
describes each global variable and function, each object and its associated methods
and properties in the JavaScript extensions, and all the JavaScript core functions that
are supported when writing scripts.

•

“Glossary” on page 248 defines terms used in this guide.

Hands-on examples in this guide

This guide provides hands-on examples to get you involved in writing scripts that exercise
pertinent concepts. You are encouraged to save your examples, but this is optional. A few
of them are used again, but in those cases, the examples let you know if you should save
results.

Here is a list of all the hands-on examples and their locations in this guide:

“Writing Scripts”

•

“Hands-on example 2_1: Writing a keyframe script to the composition timeline” on
page 17

•

“Hands-on example 2_2: Writing a keyframe script to a movie clip timeline” on page 19

•

“Hands-on example 2_3: Creating a simple event handler” on page 22

•

“Hands-on example 2_4: Initializing a movie clip property” on page 22

•

“Hands-on example 2_5: Creating a bounds check” on page 23

•

“Hands-on example 2_6: Creating a state script” on page 24

“Behaviors”

•

“Hands-on example 3_1: Changing movie clip states” on page 32

•

“Hands-on example 3_2: Creating a preloader” on page 37

Using Help | Contents | Index Back 6

Adobe LiveMotion Scripting Guide Introduction

Using Help | Contents | Index Back 6

“Movie Clips”

•

“Hands-on example 4_1: Mouse trailer” on page 51

“Events and Event Handlers”

•

“Hands-on example 5_1: Using system-based event handlers to rotate a movie clip” on
page 65

•

“Hands-on example 5_2: Programmatic bounce” on page 66

•

“Hands-on example 5_3: Creating an onKeyDown event handler” on page 69

•

“Hands-on example 5_4: Creating a simple button event handler” on page 72

•

“Hands-on example 5_5: Creating a toggle button” on page 73

•

“Hands on example 5_6: Experimenting with automatically generated button event
handlers” on page 74

Where to go for more information

For more information on LiveMotion

See the

LiveMotion 2.0 User Guide

 for detailed information on using Adobe Online to
access a resources that will help you with using LiveMotion.

For information on JavaScript

Flanagan, David,

JavaScript The Definitive Guide, Third Edition

, O’Reilly & Associates, 1998
(ISBN: 1-56592-392-8)

Moncur, Michael,

 Teach Yourself JavaScript in 24 Hours, Second Edition

, Sams, 2000

Goodman, Danny,

JavaScript Bible, Fourth Edition

, IDG Books, 2000

Smith, Dori and Tom Negrino,

JavaScript For the World-Wide Web

Wyke, Gilliam, and Ting,

Pure JavaScript

, Sams, 1999

Web sites

Check http://www.adobe.com for updated lists of reference sites.

See http://www.moock.org for ActionScript help to assist you in learning about
LiveMotion scripting.

Using Help | Contents | Index Back 7

Adobe LiveMotion Scripting Guide Overview

Using Help | Contents | Index Back 7

Overview

Script authoring

LiveMotion 2.0 is a script authoring tool. It makes use of a JavaScript editor, interpreter,
and debugger, which enable you to create, preview, troubleshoot, and export the scripted
contents of your

composition

(

.

liv

 file).

Through the Script Editor you can write scripts to the composition and movie clip
timelines. In addition, you can write scripts that respond to events such as pressing a key
or loading a movie clip. The Script Editor provides guidance in using the JavaScript core
syntax and extensions. It lists all the current movie clips, labels, and states defined in your
composition, provides you with the ability to set breakpoints, and assists you in locating
all the scripts that are currently written.

LiveMotion 2.0 also includes a Debugger that you can use in Preview mode to trouble-
shoot your compositions before they are exported. The Debugger not only locates and
identifies errors but provides you with a number of significant debugging features
including the ability to view variable values, set script breakpoints, and step through lines
of a script as they are executed. When you are satisfied with the way a composition is
working, you can export it to the SWF file format for viewing in the standalone Flash Player
or in the Flash Player plug-in installed in your Netscape or Microsoft® Internet Explorer
browser. Exporting the

.liv

 file causes the JavaScript it contains to be converted to Action-
Script and embedded in the exported SWF file.

LiveMotion objects

As you recall from the

LiveMotion 2.0 User Guide

, objects are the basic element of a compo-
sition, and they have a hierarchical organization. Movie clips, the focus of this guide, are
also objects. And they can be manipulated manually in all the ways you have already
learned about in the User Guide, plus new ways.

Writing scripts to objects

You can manipulate objects through the JavaScript scripting language. This opens up all
sorts of new possibilities for handling objects. However, you can only write scripts to a
certain type of object, namely, the movie clip.

A movie clip starts out as a “regular” (unscriptable) object. To access it through scripting,
you must convert the object into a movie clip. A movie clip has its own timeline so that it
can play independently of the composition timeline and independently of any parent
timeline (in the case of nested movie clips). When you add states to an object, LiveMotion
automatically converts the object into a movie clip for you. Movie clips are equivalent to
the time-independent objects and time-independent groups in LiveMotion 1.0.

Using Help | Contents | Index Back 8

Adobe LiveMotion Scripting Guide Overview

Using Help | Contents | Index Back 8

Extending functionality

By writing scripts, you can perform many functions on a movie clip that are equivalent to
those you can perform without using scripting. You can, for example, set a movie clip’s
vertical and horizontal position properties. This capability is equivalent to setting the
position stopwatch and creating animation keyframes. By setting properties through
scripts, you can perform functions such as changing an object’s opacity, rotation, and
scale—to name a few. However, this is just the beginning of what you can do through
scripting.

Scripting enables you to control how your composition responds to events, use logic to
compare values and make decisions based on those values, easily repeat long processes
using a variety of looping mechanisms, respond to user events such as mouse and
keyboard changes, and encapsulate tasks into functions that can be called by any number
of movie clips anywhere in a composition. Not only can you write scripts that interact with
the user, you can write scripts that interact with servers. Through scripting, you can get
data from a server and post data to a server. The information obtained from a server can
be used to dynamically update your composition. You will find it difficult, if not, impos-
sible, to perform most these tasks through the use of keyframes (and basic LiveMotion 1.0
behaviors). These programmatic controls, available through the JavaScript language,

extend

 what you can create with keyframes and enable you to fine tune your composition.

Script locations

You can attach scripts at different locations in your composition to achieve the result that
you are after, whether that be animation, user interaction, or interaction with a server.
These locations are:

•

On keyframes

•

In event handlers

•

In state change handlers

Although using labels is not a script writing technique in and of itself, you typically use
labels in combination with scripts to redirect the flow of execution of a timeline to a frame
with the identifying label. For example, this script sends the playhead of

myClip

’s timeline
to the frame labeled “

Start

”:

myClip.gotoAndPlay("Start");

For more information on writing scripts to various locations in your composition, see
“Writing Scripts” on page 14. That section introduces you to script writing and provides
short exercises that you can work through.

JavaScript in LiveMotion

The LiveMotion scripting environment is based on JavaScript, but it also is compatible
with ActionScript and ECMA-standard JavaScript (with a few caveats). Table 1 describes
these caveats.

Using Help | Contents | Index Back 9

Adobe LiveMotion Scripting Guide Overview

Using Help | Contents | Index Back 9

Table 1 JavaScript as Implemented in LiveMotion, Compared to ActionScript
and ECMA-Standard JavaScript

Characteristic ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaS-
cript vs. the JavaScript
implementation in
LiveMotion

Case In ActionScript, keywords are case sensitive, but vari-
ables and other identifiers are not. JavaScript as
implemented in LiveMotion behaves the same way.

ECMA-standard JavaS-
cript is entirely case sen-
sitive.

switch/case

c-
onstruct

ActionScript does not support the

switch/case

 con-
struct. JavaScript and the LiveMotion scripting envi-
ronment do.

ECMA-standard JavaS-
cript and JavaScript as
implemented in Live-
Motion both support
the

switch/case

 syntax.

States With the

movieClip

.lmSetCurrentState()

 method,
LiveMotion supports the setting of states of movie
clips using scripting code. ActionScript does not
support this.

ECMA-standard JavaS-
cript has no language
facilities to deal with
states of objects in this
sense.

eval()

global

function

The ActionScript and the LiveMotion scripting envi-
ronments implement the

eval()

 global function in
the same way. (See “Reference” on page 105.)

ECMA-standard JavaS-
cript implements an
expanded

eval()

 func-
tion.

Support for
Unicode

ActionScript and JavaScript as implemented in Live-
Motion do not support Unicode.

ECMA-standard JavaS-
cript supports
Unicode.

Maximum
number of
nested

with

statements.

ActionScript and JavaScript as implemented in Live-
Motion support a maximum of 8 levels of nested

with

 statements.

ECMA-standard JavaS-
cript supports any num-
ber of levels of nested

with

 statements.

Exception
handling

ActionScript and LiveMotion do not support excep-
tion handling.

ECMA-standard JavaS-
cript supports error
objects and exception
classes.

Function

 con-
structor

ActionScript and LiveMotion do not support the

Function

 constructor. However, object-based func-
tions can be created. For example:

this.myFunction =

function

() {}

ECMA-standard JavaS-
cript supports the

Func-

tion

 constructor.

Using Help | Contents | Index Back 10

Adobe LiveMotion Scripting Guide Overview

Using Help | Contents | Index Back 10

Frame num-
bers

In ActionScript, the following global functions and
movie clip methods accept either frames or labels as
arguments. In LiveMotion, only labels are used.

gotoAndPlay()

 global function

gotoAndStop()

global function

movieClip.gotoAndPlay() method

movieClip.gotoAndPlay() method

In addition, the lmFrameofLabel() global function is
available in LiveMotion but not in ActionScript. In
LiveMotion, it is used to return the frame number of
the label that is passed in as an argument to the call.
lmFrameofLabel() only works for labels on the _root
timeline.

ECMA-standard JavaS-
cript has no language
facilities to deal with
frames or labels in this
sense.

Characteristic ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaS-
cript vs. the JavaScript
implementation in
LiveMotion

Using Help | Contents | Index Back 11

Adobe LiveMotion Scripting Guide Overview

Using Help | Contents | Index Back 11

Syntax JavaScript as implemented in LiveMotion supports
most ActionScript syntax. For a complete listing, see
“Reference” on page 105. The following ActionScript
syntax is not supported, either because it was depre-
cated in Flash 5, or for other reasons.

call() function

chr() function

getProperty() function

_highquality property

ifFrameLoaded() function

int() function

nextScene() function

prevScene() function

print() function

printAsBitmap() function

printAsBitmapNum() function

printNum() function

random() function

setProperty() function

set statement

setVariable() function

substring() function

tellTarget() function

toggleHighQuality() function

$version() function

Most common string operators (e.g., add and and)

Note that some deprecated Flash 5 calls can be
duplicated using JavaScript syntax. For example, the
following code shows how you can mimic getProp-
erty() and setProperty():

movieClip.property = value;

var value = movieClip.property

ECMA-standard JavaS-
cript and JavaScript as
implemented in Live-
Motion share the same
basic objects, proper-
ties, and methods, as
described in “Refer-
ence” on page 105.

Note that in LiveMotion
a Date() object cannot
be constructed using a
text string to provide
the current date.

Characteristic ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaS-
cript vs. the JavaScript
implementation in
LiveMotion

Using Help | Contents | Index Back 12

Adobe LiveMotion Scripting Guide Overview

Using Help | Contents | Index Back 12

onClipEvent()
movie clip
event
handlers

ActionScript supports the onClipEvent() movie clip
event handlers:

load

unload

enterFrame

mouseMove

mouseDown

mouseUp

keyDown

keyUp

data

LiveMotion supports the equivalents of the
ActionScript onClipEvent() movie clip event
handlers:

onLoad

onUnload

onEnterFrame

onMouseMove

onMouseDown

onMouseUp

onKeyDown

onKeyUp

onData

Note: The onData event handler is not available from _root.

ECMA-standard JavaS-
cript doesn’t support
movie clip events.

Characteristic ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaS-
cript vs. the JavaScript
implementation in
LiveMotion

Using Help | Contents | Index Back 13

Adobe LiveMotion Scripting Guide Overview

Using Help | Contents | Index Back 13

on() button
event handlers

ActionScript supports the on() button event
handlers for the button object:

press

release

releaseOutside

rollOver

rollOut

dragOver

dragOut

LiveMotion supports the equivalents of the Action-
Script on() button event handlers for all movie clips
(in LiveMotion, a button is simply another movie
clip—there is no separate button object):

onButtonPress

onButtonRelease

onButtonReleaseOutside

onButtonRollOver

onButtonRollOut

onButtonDragOver

onButtonDragOut

ECMA-standard JavaS-
cript doesn’t support
movie clip events.

Evaluating
undefined as a
number

In ActionScript, evaluating undefined as a number
returns 0. LiveMotion does the same.

In ECMA-standard Java-
Script, evaluating unde-
fined as a number
returns undefined.

Evaluating
undefined as a
string

In ActionScript, evaluating undefined as a string
returns "". LiveMotion does the same.

In ECMA-standard Java-
Script, evaluating unde-
fined as a string returns
NaN.

Boolean value
of non-empty
strings

In ActionScript, only strings that can be converted to
valid non-zero numbers convert to true.

In ECMA-standard Java-
Script, all non-empty
strings convert to true.

Characteristic ActionScript vs. the JavaScript implementation in
LiveMotion

ECMA-standard JavaS-
cript vs. the JavaScript
implementation in
LiveMotion

Using Help | Contents | Index Back 14

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 14

Writing Scripts

Introduction to script writing
This section introduces you to some simple examples of writing movie clip scripts. It
emphasizes where you place scripts, as script placement determines when a script gets
called. Scripts are placed at three locations. These are:

• Script keyframes

• Event handlers

• State change handlers

In addition, this section discusses labels, which are frequently used in conjunction with
scripting.

The section begins with a brief overview of the Script Editor user interface. To acquaint
you with the functionality provided by the Script Editor, each example is presented as an
exercise that you can work through yourself. You are also introduced to movie clip refer-
encing and some basic JavaScript syntax, although a tutorial on JavaScript basics is
beyond the scope of this guide. Understanding JavaScript is a prerequisite if you want to
do any serious LiveMotion scripting.

Script Editor overview
You will be using the Script Editor to write your scripts and to locate information. Figure 1
shows the Script Editor window. The callouts identify its main functionality.

Figure 1 Script Editor main window
A. Movie clip navigator B. Scripting syntax helper C. Composition browser
D. Automation syntax helper E. Go to previous script F. Go to next script
G. Handler scripts H. State scripts I. Keyframe scripts J. Find K. Syntax highlighting
L. Scripting helper window M. Script window N. Description window

A B C D E F G H I J K

M

N

L

Using Help | Contents | Index Back 15

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 15

Table 2 briefly describes each of the control buttons and windows shown in the Script
Editor window.

Table 2 Script editor buttons and windows

Button or window Description

Movie clip navigator Lists all the movie clips in a composition in hierarchical order.
Selecting a movie clip in this window allows you to see and edit
scripts on that movie clip.

Scripting syntax helper Lists the LiveMotion 1.0 Behaviors, ActionScript syntax, and Jav-
aScript syntax. Selecting an item in the list displays a brief
description of the argument in the Description window. Dou-
ble-clicking a syntax entry adds the item's syntax to the current
script.

Composition browser Lists all the movie clips, labels, and states in the composition.
Selecting an item in the list displays the reference text that will
be entered in the Script window. Double-clicking a movie clip,
label, or state adds the respective movie clip reference, label
name, or state name to the current script.

Automation syntax helper Lists and describes all the global objects and properties in the
JavaScript core that are supported by automation scripting and
all predefined objects, their methods, and properties in the
Automation scripting DOM. This button is available when the
export format is Live Tab when you are editing an automation
script. For details on automation scripts and Live Tabs, see the
LiveMotion 2.0 SDK.

Go to previous script Switches the script view to the previously edited script. This
button works like the Back button in a Web browser.

Go to next script Switches the script view to the more recently edited script. This
button works like the Forward button in a Web browser.

Handler scripts Lists all the event handlers in the drop-down menu for which
you can write scripts. This button, as well as the State scripts and
Keyframe scripts buttons (described below), display a blue trian-
gle when they contain scripts.

State scripts Lists all states in the drop-down menu that are defined for the
current movie clip (movie clip selected in the Movie clip naviga-
tor). The list contains the normal state, and it can include the
predefined states over, down, and out, plus any custom states
defined for the movie clip.

Keyframe scripts Lists all script keyframes in the drop-down menu for the current
movie clip.

Drop-down menu Displays the keyframes, event handlers, or states for the current
movie clip. The contents displayed depend on which of the pre-
vious three buttons is selected. Items in this menu will display
an asterisk if scripts exist on them.

Find Opens a dialog for finding and replacing text strings in the
current script.

Using Help | Contents | Index Back 16

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 16

Using labels

What is a label?
A label is a string identifier, or name, that references a frame in a timeline. You can use
labels as arguments in scripts that you write. You could, for example, create a label called
"right here" on a particular frame. With the label in place, you can write a script that sets
the current frame of a timeline to the frame marked with the label "right here." Labels
don't have to be used in scripts; they can be used simply to annotate a timeline. For
example, you could apply the label “Accelerate” to a frame to identify where an object
appears to pick up speed.

Guidelines for creating label names
To create a label name, follow these guidelines:

• The first character of a label name must be in this set [a-z, A-Z, _, $]. It must not be a
number.

• The remaining characters include the characters in the above set plus the numbers 0
through 9.

Note: Labels names that start with invalid characters will automatically have an under-
score (_) character added to the beginning of the name.

How to create labels

To create a label:

1 Display the timeline to which you want to add a label.

2 Move the current-time marker to the frame to which you want to add a label.

3 Click the Labels button in the timeline. See Figure 2.

4 Enter a name for the label in the text box and click OK.

The label name and icon appear on the timeline at that frame.

You can duplicate, rename, move, or delete labels. See the LiveMotion 2.0 User Guide for
details.

Syntax highlighting Turns syntax highlighting on and off.

Script window Displays existing scripts and new scripts that you write to the
current movie clip.

Description window Displays brief descriptions of the syntax listed in the Scripting
syntax helper.

Scripting helper window Displays contents of the Scripting Editor’s Movie clip navigator,
syntax helper, and browser buttons. The contents displayed are
dependant on which of the buttons is selected.

Button or window Description

Using Help | Contents | Index Back 17

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 17

Using a label in a script
For examples of using labels in scripts, see “Hands-on example 2_1: Writing a keyframe
script to the composition timeline” on page 17 and “Hands-on example 2_2: Writing a
keyframe script to a movie clip timeline” on page 19.

Using script keyframes

What are script keyframes?
A script keyframe is a frame in a timeline to which a script is added. When the player head
enters that frame during playback, the script executes.

How to create script keyframes

To add a script to a keyframe:

1 Navigate to the timeline where you want to add the script keyframe.

2 In the Timeline window, move the current-time marker to the specified frame.

Note: Optionally, click the Labels button, and enter a name for the point in time where the
script will be added to the timeline.

3 Click the Scripts button to the left of the timeline to create a script keyframe at the
current-time marker. This also opens the Script Editor.

Hands-on example 2_1: Writing a keyframe script to the compo-
sition timeline
This example uses script keyframes and a label. A script written to the composition
timeline moves a movie clip horizontally across the Composition window.

To use script keyframes on the composition timeline:

1 Create a new document in LiveMotion. Save the file as Ex2_1.liv.

2 Bring up the Timeline window by choosing Timeline > Composition Window from the
main menu. Alternately, you can use Ctrl+T (Windows®) or Command+T (Mac OS).

3 Create an ellipse in the Composition window, and select it.

Note: By default, the object is selected after you create it.

4 Choose Object > Movie Clip from the main menu to convert the object into a movie
clip. Alternately, you can click the “Make selected objects movie clips” button located at
the bottom of the Timeline window.

A movie clip icon appears to the left of the object name in the Timeline window.

Note: To be scriptable, an object must be converted into a movie clip!

Using Help | Contents | Index Back 18

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 18

5 Select the object name in the timeline, press Enter, and enter in the new name “Ball”
into the text box. Press OK.

Figure 2 Timeline window showing the movie clip icon to the left of Ball

6 In the Timeline window, be sure the current-time marker is set to frame 0.

7 Click the Scripts button to add a script keyframe at frame 0.

This also brings up the Script Editor. With the Script Editor window displayed, you can add
scripts to the script keyframe you just created.

8 Write a script to the script keyframe at frame 0 that will move Ball 5 pixels to the right.
Here is a script that does this:

_root.Ball._x += 5;

In the script, _root.Ball is the absolute reference to the movie clip named Ball. _root
represents the composition timeline. All movie clips placed on _root's timeline can be
accessed by name as properties of _root. Thus we can access Ball by saying _root.Ball.
(For details on _root and absolute references, see “Movie clip addressing” on page 45.) _x is
the horizontal position property of Ball. It is one of several built-in movie clip properties.
(For details, see “Movie clip properties and methods” on page 48.) The operator (+=) is just
a shorthand way to write the code:

_root.Ball._x = _root.Ball._x + 5;

9 With the current-time marker still at frame 0, click the Labels button in composition
timeline. Enter Start in the text box, and click OK to create a label named Start at frame 0.

Note: When you create the label on the timeline frame, do not enclose the label name in
quotation marks. However, when you provide the value for label (which is of type string) as
a method argument, you must enclose the name in quotation marks to specify it as a
string literal. This is done in step 13 of this example.

10 Move the current-time marker to frame 1.

11 Drag the endpoint of the composition timeline so that it ends at frame 1.

This also extends the endpoint of Ball’s duration bar so that it ends at frame 1.

Using Help | Contents | Index Back 19

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 19

12 Click the Scripts button to create a script keyframe at frame 1. See Figure 3. This also
opens the Script Editor window (if it is not already open).

Figure 3 Timeline window showing label and script keyframe at frame 1
and script keyframe at frame 2

13 Enter the following code in the Script window:

_root.gotoAndPlay("Start");

gotoAndPlay() is a movie clip method that jumps a movie clip’s timeline to a specific label
and plays the timeline from the frame associated with the label. In this case, it jumps to the
label “Start” on the composition timeline (_root).

Note: When you created the label on the timeline (step 9), you did not enclose the label
name in quotation marks. However, when you provide the string value for label to
gotoAndPlay(), you must enclose the name in quotation marks.

14 Preview the movie clip by switching to Preview mode or by exporting your compo-
sition to the Flash Player.

When the composition is previewed, the script you added at frame 0 moves Ball 5 pixels to
the right on the screen. When execution reaches frame 1, the gotoAndPlay() statement
moves the current-time marker to the frame labeled "Start" (in this case frame 0) and plays
the timeline. At this point the script on frame 0 executes again.

You can adjust the speed of Ball by changing the value added to _x in the script to a new
value.

This concludes your first scripted composition!

Hands-on example 2_2: Writing a keyframe script to a movie clip
timeline
This example writes a script to the movie clip’s own timeline rather than to the compo-
sition timeline. The results are the same as before. The difference is that, in the previous
example, _root moved the Ball movie clip. In this example, the movie clip moves itself.

To write a keyframe script to the timeline:

1 Repeat steps 1 through 5 of “Hands-on example 2_1: Writing a keyframe script to the
composition timeline” on page 17 to create a movie clip named Ball. Save this file as
Ex2_2.liv.

2 Double click Ball in the composition timeline to open its own timeline. In the movie
clip’s timeline, be sure the current-time marker is set to frame 0. See Figure 4.

Using Help | Contents | Index Back 20

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 20

3 Click the Scripts button in the Timeline window to insert a script keyframe at frame 0.

This also brings up the Script Editor.

.

Figure 4 Ball movie clip timeline

4 Write this script in the Script window to move Ball 5 pixels to the right.

this._x += 5;

The following keyword in the above statement refers to the movie clip to which the script
is added—in this case, the movie clip Ball:

this

Thus, the statement is incrementing Ball's horizontal position property.

You can also use the absolute reference as you did in the previous example in “Hands-on
example 2_1: Writing a keyframe script to the composition timeline” on page 17. The
absolute reference would appear as:

_root.Ball._x += 5;

If, however, the object hierarchy for Ball changes (that is, Ball is placed in a movie clip
group), the absolute reference would no longer be valid. (For details on how movie clip
groups change the object hierarchy, see “Effect of creating a movie clip and a movie clip
group” on page 43.)

5 With the current-time marker still at frame 0 in the Timeline window, click the Labels
button. Enter Start in the text box, and click OK to add the label to frame 0.

6 Move the current-time marker to frame 1, and drag the end point of Ball’s timeline so
that it ends at frame 1.

7 Create a script keyframe at frame 1, and enter the following code in the Script window:

this.gotoAndPlay("Start");

8 Preview the movie clip.

Ball moves across the screen just as it did in the previous example. The movie clip
advances its horizontal position with each successive execution of the script.

Using Help | Contents | Index Back 21

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 21

Using event handlers

What are event handlers?
An event handler is script that is run as a result of a user action or a system-based event.
For example, you can write an event handler that executes every time the user presses the
mouse button or passes the mouse cursor over the movie clip. System-based events such
as onLoad and onData occur as a result of composition playback or loading variables into
a movie clip.

Table 3 lists all the event handlers and describes the events they handle.

Table 3 Movie clip events

Event handler Event

onLoad First appearance of a movie clip in the composition. You can write
scripts here to initialize and declare variables and functions.

onUnload The first frame after the movie clip is removed from the composition.

onEnterFrame Each time the playhead enters a frame, before the frame is rendered,
while the movie clip is in the composition.

onMouseMove Any movement of the mouse cursor while the movie clip is in the
composition.

onMouseDown Pressing the mouse button while the movie clip is in the composition.

onMouseUp Releasing the mouse button while the movie clip is in the composi-
tion.

onKeyDown Pressing a key while the movie clip is in the composition.

onKeyUp Releasing a key while the movie clip is in the composition.

onData When the loading of variables into a movie clip is complete or a por-
tion of a loaded movie completes loading into a movie clip.

onButtonPress Clicking the mouse button while the mouse cursor is on the movie
clip.

onButtonRelease Releasing the mouse button while the mouse cursor is on the
movie clip.

onButtonReleaseOut-
side

After pressing the mouse button while the mouse cursor is on the
movie clip, moving the mouse cursor off the movie clip and releasing
the button.

onButtonRollOver Moving the mouse cursor on the movie clip.

onButtonRollOut Moving the mouse cursor off the movie clip.

onButtonDragOver After pressing the mouse button while the mouse cursor is on the
movie clip, moving the cursor off and then back on the movie clip.

onButtonDragOut After pressing the mouse button while the mouse cursor is on the
movie clip, moving the mouse cursor off the movie clip.

Using Help | Contents | Index Back 22

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 22

How to add a script to an event handler

To add a script to an event handler:

1 Select a movie clip in the timeline or in the composition.

2 Choose Scripts > Script Editor to open the Script Editor. Alternately, you can use Ctrl+J
(Windows) or Command+J (Mac OS).

3 In the Script Editor, click the Handler scripts button to display the drop-down menu of
events.

4 Select the handler name from the list for which you want to write a handler.

5 Write the script in the Script window.

Hands-on example 2_3: Creating a simple event handler
This hands-on example adds the same movement to the movie clip Ball as the previous
keyframe script examples did. See “Hands-on example 2_1: Writing a keyframe script to
the composition timeline” on page 17 and “Hands-on example 2_2: Writing a keyframe
script to a movie clip timeline” on page 19. However, it uses an event handler to call the
script that moves Ball.

To create an event handler:

1 Repeat steps 1 through 5 of “Hands-on example 2_1: Writing a keyframe script to the
composition timeline” on page 17 to create a movie clip named Ball. Save this file as
Ex2_3.liv.

2 Choose Scripts > Script Editor to open the Script Editor.

3 In the Script Editor, click the Handler scripts button to display the drop-down menu of
event handler names.

4 Select the onEnterFrame handler, and enter this script to move Ball horizontally.

this._x += 5;

This onEnterFrame event handler script causes Ball to move itself each time the playhead
enters a frame.

5 Preview the composition. The ball moves horizontally across the Composition window.

6 Save this file for the next two hands-on exercises.

Hands-on example 2_4: Initializing a movie clip property
This example builds on the previous one. It uses Ball's onLoad event handler to explicitly
set the horizontal starting position of Ball and to initialize a property containing the speed
that Ball will move. For this example, open Ex2_3.liv.

To initialize a property:

1 Select Ball, and choose Scripts > Script Editor to open the Script Editor.

2 Click the Handler scripts button, and select the onLoad event. Enter this script:

this._x = 100; //sets the initial position of Ball

this.speed = 5;

Using Help | Contents | Index Back 23

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 23

The first statement in this onLoad event handler script sets the initial horizontal position of
Ball to 100. The second creates a new property of Ball called speed and assigns it the value
5.

3 With the Handler scripts button still toggled on, select the onEnterFrame handler from
the drop-down menu. This brings up the event handling script that moves Ball.

this._x += 5;

Change the script to:

this._x += speed;

4 Preview the results.

5 Save this file as Ex2_3.liv for use in the next hands-on exercise.

Except for setting Ball’s initial position, the behavior is the same as in the previous exercise.
Ball moves horizontally across the Composition window.

Hands-on example 2_5: Creating a bounds check
As another variation on the previous example, you can modify the onEnterFrame event
handler to do a bounds check to be sure Ball doesn't move out of the Composition
window.

To create a bounds check:

1 Open the file Ex2_3.liv that you created in a previous exercise.

2 Select Ball in the Timeline window, and choose Scripts > Script Editor to open the Script
Editor.

3 Click the Handler scripts button, and select onEnterFrame from the drop-down menu of
event handlers. This brings up Ball’s event handling script:

this._x += speed;

4 To this script, add these if statements.

if(this._x > 550)

this.speed = -5;

if(this._x < 0)

this.speed = 5;

5 Preview.

Ball moves back and forth horizontally across the Composition window. You should adjust
the value 550 to reflect your Composition window’s actual width. Check Composition
Settings to determine the width.

Using state scripts

What are state scripts?
Thus far, the examples in this section have illustrated adding scripts to:

Using Help | Contents | Index Back 24

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 24

• The composition timeline using its Labels and Scripts buttons

• Movie clip timelines using its Labels and Scripts buttons

• Event handlers

From working with the LiveMotion 1.0 user interface, recall that you can create rollover
states for an object. Scripts also can be added to these states. The state script is executed
each time the object changes to the state to which the script is added.

How to add scripts to states

To add a script to a state:

1 Select the object.

2 Open the States palette to view the movie clip states.

3 In the States palette, select the movie clip state to which you want to add a script.

4 Click the Scripts button in the palette.

This opens the Script Editor with the correct state script displayed.

5 Write the script in the Script window.

Hands-on example 2_6: Creating a state script
This example is similar to the keyframe examples you have created so far. Using the States
palette, you create an over state, which, for effect, you can change to a different color.
Then you write a script that moves the Ball one direction in the normal state and another,
in the over state.

To create the state script:

1 Repeat steps 1 through 5 of “Hands-on example 2_1: Writing a keyframe script to the
composition timeline” on page 17 to create a movie clip named Ball.

2 Using the States palette, create an over state for the movie clip. Give it a different fill
color, so you can more easily recognize the movement in the over state during playback.

3 In the States palette, select the over state.

Figure 5 States palette with over state selected

4 Click the Scripts button at the bottom of the palette.

This opens the Script Editor at the location where you can add a script for the over state.

5 Enter the following code to move the movie clip 5 pixels to the right:

this._x += 5;

Using Help | Contents | Index Back 25

Adobe LiveMotion Scripting Guide Writing Scripts

Using Help | Contents | Index Back 25

6 Select normal from the Script Editor’s drop-down menu of states, and enter the
following code:

this._y += 20;

This moves the movie clip vertically.

7 Preview the composition.

Ball first appears in its normal state. It does not move until you first pass the mouse over it.
Try this a few times. Each time the mouse is moved over Ball, it moves five pixels to the
right. Moving the mouse off Ball causes the movie clip to return to its normal state. Each
time Ball enters its normal state, it moves vertically downward 20 pixels.

Using Help | Contents | Index Back 26

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 26

Behaviors

Introduction to behaviors
This section describes how you can create LiveMotion 1.0 behaviors in LiveMotion 2.0. It is
meant to help you move on to a new way of looking at what behaviors really are.

In LiveMotion 1.0, behaviors did everything from playing and stopping compositions to
entertaining the viewer with a looping movie clip while a lengthy, complex animation is
loading. Traditionally, behaviors executed when either a movie clip reached a certain point
on its timeline or when a movie clip entered a certain state. In LiveMotion 2.0, behaviors
have evolved into JavaScript code. To assist you in your transition to writing scripts, this
section explains where you can add scripts and the implications of adding the scripts in
these locations. It provides an overview of how to add, open, and remove scripts. Then for
each LiveMotion 1.0 behavior, the section provides a procedure for implementing that
behavior in LiveMotion 2.0. As additional help, you are provided guidance using the
Scripting syntax helper to access the LiveMotion 1.0 behaviors and the LiveMotion 2.0
code to which each behavior maps.

Even if you are new to LiveMotion, it will benefit you to read this section to learn how
LiveMotion 1.0 behaviors are implemented in JavaScript, because you can incorporate
their functionality into any scripts that you write. You are not required to know anything
about LiveMotion 1.0 behaviors to create the examples in this chapter, which can instead
serve as simple examples to start you down the road to scripting.

Working with scripts that replace behaviors
This section provides procedures for adding, opening, and deleting scripts from keyframes
and states.

Note: In LiveMotion 2.0, you also can write scripts to handle events. Event handling is
made possible in LiveMotion 2.0 because of its support for scripting. For details on
creating event handlers, see “Movie Clip Events and Event Handlers” on page 64.

The effect of writing scripts to movie clip timelines versus movie
clip states
You can write scripts to movie clip timelines or to movie clip states, depending on the
effect that you are after. To prepare you for working with scripts, you should understand
these concepts:

• Timelines have script keyframes (that is, script icons on timeline frames)

• States have timelines

Using Help | Contents | Index Back 27

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 27

When you write a script to a movie clip timeline, you write that script to a specific timeline
frame. The frame is called a script keyframe. During execution of the .liv file in Preview
mode or on export of the SWF file, the script keyframe executes at a specific frame in the
lifetime of the movie clip—that is, when the playhead reaches that script keyframe. A
timeline can have multiple script keyframes.

All objects have a normal state by default. You also can add any of the predefined states
(over, down, or out) to a movie clip in the States palette, or you can define custom states
with their own names. Each movie clip state contains its own independent timeline, and
each of these timelines can contain keyframes scripts.

When you write a script to a state, the script executes only when the movie clip enters that
state, not at a preset point in the movie clip’s lifetime. Say, for example, the user presses
the mouse button on a movie clip for which you have defined a down state. This would
execute any script you may have written for that state. You can write scripts to any or all
states that you define for a movie clip. You also can write multiple scripts to the timeline of
a single defined state by adding script keyframes.

Accessing scripts
You can access scripts from:

• Script keyframes in a timeline. Clicking the script keyframe opens the Script Editor and
displays the script added to that frame on the timeline.

• The Scripts button towards the bottom of the States palette. Clicking the scripts button
opens the Script Editor on the state currently selected in the States palette.

In LiveMotion 1.0, the Scripts button was called the Behaviors button. For your general
reference, the following four figures show you the LiveMotion 1.0 and LiveMotion 2.0
Timeline windows and States palettes.

Figure 6 shows the LiveMotion 1.0 Timeline window with a behavior added to a keyframe
in a timeline.

Figure 6 LiveMotion 1.0 Timeline window

Using Help | Contents | Index Back 28

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 28

Figure 7 shows the LiveMotion 2.0 Timeline window. In place of the Behaviors button, the
Scripts button is used to create new scripts on timeline script keyframes. A separate Labels
button is used to create labels on a timeline. The figure shows a label on a script keyframe.

Figure 7 LiveMotion 2.0 Timeline window

Figure 8 shows the LiveMotion 1.0 Rollovers palette. The Behaviors button adds behaviors
to object states and allows the user to access the behaviors. In the figure, the behaviors
icon on the over state indicates that a behavior has been added to that state.

Figure 8 LiveMotion 1.0 Rollovers palette

Figure 9 shows the LiveMotion 2.0 States palette. This is very similar to the LiveMotion 1.0
Rollovers palette. However, you use a Scripts button to add new scripts to, and to access
existing scripts on, object states. Like the LiveMotion 1.0 Rollovers palette, the script icon
on the over state in the figure indicates that a custom script has been added to that state.

Figure 9 LiveMotion 2.0 States palette

Using Help | Contents | Index Back 29

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 29

Advanced users: You can access scripts by selecting Scripts > Script Editor from the main menu. Alternately,
you can use the keyboard shortcut Ctrl + J (Windows) or Command + J (Mac OS). Then, select the movie clip
whose script you want to access in the Script Editor’s Movie clip navigator. This takes you to that movie clip's
scripts, but not necessarily to the script that you want. You must then navigate to the event handler, state, or
script keyframe containing the script you want to access.

Adding Scripts

To add a script to a movie clip state:

Note: The first three steps of this procedure also open a script on a state, as shown in the
procedure in “To open a script from a movie clip state:” on page 30.

1 In the Timeline window, select the movie clip to which you want to add a state script.

2 Open the States palette to view that movie clip’s states.

3 In the States palette, select the movie clip state to which you want to add a script.

4 Click on the Scripts button at the bottom of the States palette. See Figure 9.

This opens the Script Editor and displays the state’s Script window.

5 Click the Scripting syntax helper button to open the list of LM 1.0 behaviors. Select the
desired script by its LM 1.0 behavior name, and press Enter (or double click the name).

The script for the behavior is added to the Script window, as shown in Figure 10. For
details on the Scripting syntax helper, see “Script Editor” on page 85.

6 Replace any parameters the script requires with their values.

Figure 10 Scripting syntax helper open to LM 1.0 behaviors with the play behavior selected

To add a script to a movie clip timeline:

1 Navigate to the timeline where you want to add the script keyframe.

2 In the Timeline window, move the current-time marker to the frame to which you want
to add a script. Optionally, click the Labels button (see Figure 7), and enter a name for the
point in time where the script will be added to the timeline.

3 Click the Scripts button on the timeline to create a script keyframe at the current-time
marker.

Using Help | Contents | Index Back 30

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 30

This also opens the Script Editor.

Note: If a script keyframe already exists on the specified frame, clicking the Scripts button
simply opens the Script Editor and displays the scripts on that keyframe.

4 Click the Scripting syntax helper button to open the list of LM 1.0 behaviors. See
Figure 10. Select the desired behavior by its LM 1.0 name, and press Enter (or double click
the name).

The script for the behavior is added to the Script window.

5 Replace any parameters the script requires with their values.

Opening scripts

To open a script from a movie clip state:

1 Open the States palette to view movie clip states.

2 In the States palette, select the movie clip state with the script you want to open.

3 Click the Scripts button in the palette.

This brings up the Script Editor and displays the script for that movie clip state in the Script
window.

To open a script from the timeline:

Locate the script icon for the script you want to view, and double-click.

Deleting scripts

To delete a script from a movie clip state:

1 Open the States palette to view movie clip states.

2 In the States palette, select the movie clip state with the script you want to delete.

3 Click the Scripts button in the palette.

This brings up the Script Editor and displays the script for that movie clip state in the
Script window.

4 Select the script implementing the behavior you want to delete, and press Delete.

To delete a script from the timeline:

1 Locate the script icon for the script you want to view, and double-click.

2 Select the script implementing the behavior you want to delete, and press Delete.

Creating LiveMotion 1.0 behaviors using LiveMotion 2.0
scripts
This section provides details on how you create scripts that duplicate LiveMotion 1.0
behaviors. For your reference, Table 4 lists the LiveMotion 1.0 behaviors supported and the
LiveMotion 2.0 scripts to which they map.

Using Help | Contents | Index Back 31

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 31

Table 4 LiveMotion 1.0 Behaviors and their corresponding scripts

Creating Change State scripts
The Change State script changes the state of the specified movie clip.

To change the state of a movie clip:

1 Navigate to the location where you want to add the state change. See “Adding Scripts”
on page 29.

LM 1.0 Behavior script Description

Change State movieClip.lmSetCurrentState(state); Change the state of the
specified movie

Go to Relative
Time, Backward 1
Frame

movieClip.prevFrame(); Go to the movie clip's rela-
tive time backward 1 frame

Go to Relative
Time, Forward 1
Frame

movieClip.nextFrame(); Go to the movie clip's rela-
tive time forward 1 frame

Go to URL getURL(url,window); Open a URL in the specified
browser window or frame

Go to Label (and
stop)

movieClip.gotoAndStop(label); Go to the specified label
and stop

Go to Label (and
play)

movieClip.gotoAndPlay(label); Go to the specified label
and play

Load Movie loadMovieNum(url,levelNum); Load the specified URL into
the specified SWF file level

Run JavaScript getURL("javascript:code") Run the javascript speci-
fied

Stop All Sounds stopAllSounds(); Stop all sounds from play-
ing, but do not stop the
movie

Unload Movie unloadMovieNum(levelNum); Unload the specified
movie

Wait For Down-
load

if (this._framesloaded < lmFrameOfLa-

bel(finishLabel))

{

 this.gotoAndPlay(repeatLabel);

}

Loop the composition
timeline to a certain label
until all the frames up to a
specified label on the com-
position timeline have
loaded

Play movieClip.play(); Start playing the specified
movie

Stop movieClip.stop(); Stop playing the specified
movie

Using Help | Contents | Index Back 32

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 32

2 In the Script Editor, click the Scripting syntax helper button. Select Change State from
the LM 1.0 behaviors list, and press Enter (or double click the name).

The appropriate script appears in the Script window:

movieClip.lmSetCurrentState(state);

3 Replace the arguments described below with the appropriate values.

movieClip is a reference to the movie clip whose state you want to change.

state is a string containing the name of the state you want to set.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain
brief definitions of the script contents, and the Composition browser, to help fill in the
values. For details on using the Script Editor features, see “Script Editor” on page 85.

Hands-on example 3_1: Changing movie clip states
In this exercise, you will create two movie clip (buttons) that control the state of a third
movie clip.

To create this example:

1 Create a new composition. Save the file as Ex3_1.liv.

2 In the Composition window, create two ellipses. Give one a red fill color and the other,
a blue fill.

3 Create a down state for each ellipse in the States palette.

This converts each ellipse to a movie clip.

4 In the Composition window, create a rectangle. Give the rectangle a fill color, such as
yellow (not red or blue).

Figure 11 Composition window with two ellipses and a rectangle

5 In the States palette, give the rectangle two custom states: red and blue.

This converts the rectangle into a movie clip.

Using Help | Contents | Index Back 33

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 33

6 For each of the custom states, give the rectangle the appropriate fill color: provide a
blue fill for the blue state and red fill, for the red.

7 Open the Timeline window.

8 Select the rectangle, press Enter, and give it the new name Box. Press OK.

9 Select the red ellipse.

10 In the States palette, select the down state, and click the Scripts button to open
the Script Editor.

11 Click the Scripting syntax helper button, and expand the list of LiveMotion 1.0
behaviors.

12 Select the Change State behavior, and press Enter (or double click the behavior name).

The following script is generated in the Script window:

movieClip.lmSetCurrentState(stateName);

Replace movieClip with the absolute reference to Box, and replace stateName with the
custom state "red". You can use the Composition browser in the Script Editor to help fill in
the values for movieClip. and stateName. For details on using the Script Editor features, see
“Script Editor” on page 85.

With these two parameters replaced, the script should appear as:

_root.Box.lmSetCurrentState("red");

13 Close the Script Editor.

14 In the Composition window, select the blue ellipse. Repeat steps 8 through 12,
opening the script for the down state of the blue ellipse, but set the state of Box to blue
instead of to red. With the parameters replaced, the script should appear as:

_root.Box.lmSetCurrentState("blue");

15 Preview.

Clicking the red ellipse changes the color of box to red. Clicking the blue ellipse changes
the color of box to blue.

Creating scripts to manipulate a movie clip timeline
These scripts can be used to manipulate a timeline:

• Play

• Stop

• Go To Relative Time, Backward 1 Frame

• Go To Relative Time, Forward 1 Frame

• Go To Label (and stop)

• Go to Label (and play)

Using Help | Contents | Index Back 34

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 34

The Play and Stop scripts play or stop a specified timeline. You can, for example, add
scripts to the first frame of a composition timeline to stop the timelines of all the movie
clips it contains. Although the movie clip timelines will be stopped, the composition
timeline will continue playing, enabling you to run individual movie clips as needed using
the script for Play.

In LiveMotion 2.0, the Go To Relative Time scripts only support going forward or backward
one frame; whereas, the LiveMotion 1.0 behavior supported going forward or backward a
specified number of frames. To achieve the same result as Go To Relative Time in
LiveMotion 1.0, you can use the Go To Label script.

The Go to Label (and stop) script moves the animation to a specific label in a timeline and
stops the timeline.

The Go to Label (and play) script sends the playhead of a movie clip’s timeline to the
specified frame or label to play the timeline at that frame.

To add a Play or Stop script:

1 Navigate to the location where you want to add the script. See “Adding Scripts” on
page 29.

2 In the Script Editor, click the Scripting syntax helper button. Select Stop or Play from the
LM 1.0 behaviors list, and press Enter (or double click the behavior name).

The appropriate script appears in the Script window:

movieClip.stop();

or

movieClip.play();

3 Replace the movieClip argument described below with the appropriate value.

movieClip is a reference to the movie clip you want to start or stop at it's current frame. If
the movie clip is stopping or playing itself, use this for the movie clip, for example,

this.stop();

or

this.play();

play() and stop() are movie clip methods that are equivalent in functionality to the
respective LiveMotion 1.0 Play and Stop behaviors.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain
brief definitions of the script contents, and the Composition browser, to help fill in the
values. For details on using the Script Editor features, see “Script Editor” on page 85.

To add a Go to Relative Time script:

1 Navigate to the location where you want to add the script. See “Adding Scripts” on
page 29.

Using Help | Contents | Index Back 35

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 35

2 Click the Scripting syntax helper button. Select Go to Relative Time, Backward 1 Frame
or Go to Relative Time, Forward 1 Frame from the LM 1.0 behaviors list, and press Enter (or
double click the behavior name).

The appropriate script appears in the Script window:

movieClip.prevFrame();

or

movieClip.nextFrame();

3 Replace the movieClip argument described below with the appropriate value.

movieClip is a reference to the movie clip you want to move backward or forward 1 frame.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain
brief definitions of the script contents, and the Composition browser, to help fill in the
values. For details on using the Script Editor features, see “Script Editor” on page 85.

To add a Go to Label (and stop) script:

1 Navigate to the location where you want to add the script. See “Adding Scripts” on
page 29.

2 Click the Scripting syntax helper button. Select Go to Label (and stop) from the LM 1.0
behaviors list, and press Enter (or double click the behavior name).

The script appears in the Script window:

movieClip.gotoAndStop(label);

Replace the movieClip and label arguments described below with the appropriate values.
You can use the Scripting syntax helper and the Composition browser in the Script Editor
to help fill in these values. For details on using the Script Editor features, see “Script Editor”
on page 85.

movieClip is a string containing the label name associated with the frame on the movie
clip’s timeline to which the playhead will be sent and stopped.

label is a string associated with the frame on the movie clip’s timeline to which the
playhead will be sent and stopped.

Here is an example script with the values filled in:

_root.gotoAndStop("end");

Note: When you create the label on a timeline frame, do not enclose the label name in
quotation marks. However, when you fill in the value for label (which is of type string) in
the script, you must enclose the label name in quotation marks, as shown in this example
script.

To add a Go to Label (and play) script:

1 Navigate to the location where you want to add the script. See “Adding Scripts” on
page 29.

2 Click the Scripting syntax helper button. Select Go to Label (and play) from the LM 1.0
behaviors list, and press Enter (or double click the behavior name).

The script appears in the Script window:

Using Help | Contents | Index Back 36

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 36

movieClip.gotoAndPlay(label)

3 Replace the movieClip and label arguments described below with the appropriate
values.

movieClip is the name of the movie clip that you want to go to label and play.

label is a string containing the label name associated with the frame on the movie clip’s
timeline to which the playhead will be sent and played.

You can use the Script Editor’s Scripting syntax helper (Description window), to obtain
brief definitions of the script contents, and the Composition browser, to help fill in the
values. For details on using the Script Editor features, see “Script Editor” on page 85.

Creating Wait For Download scripts
The Wait For Download script is a special case of timeline manipulation. It is used to loop
part of the composition timeline until all the items placed on the timeline up to a specified
frame have been downloaded. A Wait For Download script can be used to prevent poor
performance for compositions that include large objects, or for lengthy and complex
movie clips.

The script only works in a script keyframe on the composition timeline and is useful only in
compositions that are later loaded with the loadMovie() movie clip method or global
function. The first SWF file in the Flash Player is always downloaded completely before
playback begins.

Wait For Download consists of three items on the main timeline: two labels with a script in
between. These items work together to loop the timeline until all the content up to a
certain frame has been downloaded.

The first label on the timeline identifies the first timeline frame that is part of the waiting
loop. The second label, and last item on the timeline, identifies the timeline frame that is
being waited upon to finish downloading. Situated in between the labels on the timeline
is a script keyframe to which the Wait For Download script is added. The script keyframe
marks the last frame of the waiting loop. Upon execution, the script tests to see if the
frame on the timeline containing the second label has loaded. If it has, the composition
timeline plays forward; otherwise, the playhead of the composition timeline is placed back
at the location of the first label where it repeats playing the frames between the first label
and the script keyframe.

This looping pattern continues until all the content on the composition timeline—up to
and including the location of the second label—has been loaded. All the objects to
download must be placed on the timeline after the script keyframe containing the Wait
For Download code and before the second label.

To add a Wait For Download script:

1 Move the current-time marker to the location on the composition timeline where you
want your waiting loop to begin. Create the first label here.

2 Move the current-time marker to the location on the composition timeline after all the
large objects that you want to wait to download have appeared on the timeline. Create
the second label here.

3 Move the current-time marker to a location between the two labels where you want
your waiting loop to end.

Using Help | Contents | Index Back 37

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 37

This point must be before the large objects waiting to be downloaded have appeared on
the timeline.

4 Create a script keyframe here. This also opens the Script Editor.

5 In the Script Editor, click the Scripting syntax helper button.

6 Select Wait For Download from the LM 1.0 behaviors list, and press Enter (or double
click the behavior name).

This script appears in the Script window:

if (this._framesloaded < lmFrameOfLabel(finishLabel))

{

 this.gotoAndPlay(repeatLabel);

}

lmFrameOfLabel() is a global function that converts a label on the composition timeline
into the corresponding frame number on export.

7 Replace the finishLabel and repeatLabel arguments described below with the appro-
priate values.

repeatLabel is a string containing the name of the first label, created in step 1.

finishLabel is a string containing the name of the second label, created in step 2.

You can use the Composition browser in the Script Editor to help fill in the values for
repeatLabel and finishLabel. For details on using the Script Editor features, see “Script
Editor” on page 85.

Hands-on example 3_2: Creating a preloader
This example creates a preloader that loops a piece of the main timeline until sufficient
frames (containing large items) of the main timeline have loaded.

A preloader of this style consists of three parts:

• Two labels and a keyframe script that implement Wait for Download

• The large item to download

• The content that to be displayed during the waiting loop

This example uses an image from the Library palette as the large item to be downloaded
and a text object that reads "Loading" as the content displayed during the waiting loop.
However, you can do whatever you want during the wait for download "pause." For
example, you could create a small animation to entertain the viewer or a status bar
showing the progress of the download.

To create the Wait for Download:

1 Create a new composition in LiveMotion, and save it as Ex3_2.liv.

2 Open the Timeline window

3 Move the current-time marker to frame 0 on the composition timeline, and create a
label. Name it “loading.”

4 Drag the endpoint of the composition timeline to frame 10.

5 Move the current-time marker to frame 10, create a label, and name it “end.”

Using Help | Contents | Index Back 38

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 38

6 Move the current-time marker to frame 5 on the composition timeline, and click the
Scripts button to create a script keyframe.

7 In the Script Editor, click the Scripting syntax helper button, and expand the LM 1.0
behaviors list.

8 Double click the behavior, Wait for Download. The script for this behavior appears in the
Script window:

if (this._framesloaded < lmFrameOfLabel(finishLabel))

{

this.gotoAndPlay(repeatLabel);

}

8) Replace finishLabel with the string "end" as shown in Figure 12.

9) Replace repeatLabel with the string "loading" as shown in Figure 12.

Figure 12 Script with label strings filled in

To place the rocket image:

1 Move the current-time marker to frame 6.

2 Open the Library palette, select the rocket image, and place it in the Composition
window.

3 Adjust the duration bar of the rocket image so that it starts at frame 6 and ends at frame
10.

To create the waiting content:

1 Move the current-time marker to frame 0.

2 Choose the text field tool from the Tools palette, and create a rectangle in the Compo-
sition window.

3 Enter “Loading...” as the text.

Using Help | Contents | Index Back 39

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 39

4 Adjust the duration bar of the text object so that it starts at frame 0 and ends at frame 5.

Figure 13 Timeline window showing text and rocket image duration bars

5 Preview.

Creating scripts to command the Flash Player
Three scripts create commands to the Flash Player. These are:

• Load Movie

• Unload Movie

• Stop All Sounds

Load Movie loads and plays a SWF file that can either replace the existing SWF file, or play
in another level of the Flash Player. Unload Movie removes an already-loaded SWF file
from the player. Stop All Sounds stops all sounds in the player, including event sounds.

To load a SWF file:

1 Navigate to the location where you want to add the script to load a SWF file. See
“Adding Scripts” on page 29.

2 Click the Scripting syntax helper button. Select Load Movie from the LM 1.0 Behaviors
list, and press Enter (or double click the behavior name).

The behavior script appears in the Script window:

loadMovieNum(url, number);

3 Replace the arguments described below with the appropriate values.

url is a string containing an absolute or relative reference to the external SWF file.

These are examples:

"http://www.mydomain.com/loadedMovie.swf"

or

"loadedMovie.swf"

number is a non-negative integer specifying the player level into which the SWF file will be
loaded. Your default composition is considered to be level number 0. If the level already
contains a SWF file, it is replaced by the one being loaded. For details on player levels, see
“Levels of the Flash Player” on page 62.

To unload a SWF file:

1 Navigate to the location where you want to add the script to unload a SWF file. See
“Adding Scripts” on page 29.

2 Click the Scripting syntax helper button. Select Unload Movie from the LM 1.0
Behaviors list, and press Enter (or double click the behavior name).

Using Help | Contents | Index Back 40

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 40

The behavior script appears in the Script window:

unloadMovieNum(number);

3 Replace the argument described below with the appropriate value.

number is a non-negative integer specifying the document level of the SWF file to be
unloaded. For details on document levels, see “Levels of the Flash Player” on page 62.

To stop all sounds:

1 Navigate to the location where you want to add the script to stop all sounds. See
“Adding Scripts” on page 29.

2 Click the Scripting syntax helper button. Select Stop All Sounds from the LM 1.0
behaviors list, and press Enter (or double click the behavior name).

The script appears in the Script window:

stopAllSounds();

Creating scripts to control the Web browser
There are two browser command scripts. These are:

• Run JavaScript

• Go to URL

Run JavaScript executes JavaScript code in the user's browser. The Go to URL script opens
a specified URL in the user’s browser and loads it into the browser at the specified target.

To run JavaScript:

1 Navigate to the location where you want to add the script to execute JavaScript. See
“Adding Scripts” on page 29.

2 Click the Scripting syntax helper button. Select Run JavaScript from the LM 1.0
behaviors list, and press Enter (or double click the behavior name).

The script appears in the Script window:

getURL("javascript:code");

3 Replace the code argument with your code, as illustrated by the example below:

getURL("javascript: window.alert('hello world');");

This code displays the string ‘hello world’ in the browser window.

To add a Go to URL script:

1 Navigate to the location where you want to add the Go to URL script. See “Adding
Scripts” on page 29.

2 Click the Scripting syntax helper button. Select Go to URL from the LM 1.0 behaviors list,
and press Enter (or double click the behavior name).

The script appears in the Script window:

getURL(url,window);

3 Replace the url and window arguments described below with the appropriate values.

url is a string containing the URL you want to load.

Using Help | Contents | Index Back 41

Adobe LiveMotion Scripting Guide Behaviors

Using Help | Contents | Index Back 41

window is a string specifying the browser location to load the URL into—either a custom
frame name or one of the four standard values: _blank, _parent, _self, or _top.

Here is an example:

getURL("http://www.adobe.com", "_blank");

Using Help | Contents | Index Back 42

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 42

Movie Clips

Introduction to movie clips
A movie clip is a LiveMotion object that you can manipulate programmatically through
scripting. Movie clips are JavaScript objects. Like other JavaScript objects, movie clips have
properties and methods, and they can be assigned to variables and placed in arrays.

Note: The composition is a movie clip that you reference as _root. Composition and _root
are synonymous. _root is a special movie clip in that you do not create or name it. It is
there by default when you create a composition, and it functions like other movie clips
with the exception of a few built-in properties and methods, which do not apply. For
details, see “Movie clip properties and methods” on page 48.

Movie clips have a set of built-in properties and methods that are defined by the Flash
Player. A movie clip’s built-in properties describe the physical features of a movie clip, for
example its height, width, position, and the number of frames on its timeline. You can set
the values of these built-in properties to programmatically control the appearance and
behavior of a movie clip throughout its lifetime. A movie clip’s built-in methods include
functionality that you can perform on movie clips such as creating copies, loading and
unloading movie clips, and playing and stopping movie clips. In addition, you can use
built-in methods to obtain information about a movie clip such as its size, the number of
bytes loaded, and whether it intersects with other movie clips at specified points. You can
also define your own methods and properties for movie clips, as described in “Creating
movie clip properties and methods” on page 54.

In addition to having the characteristics of standard JavaScript objects, movie clips have
the ability to handle user- and system-generated events such as pressing a key or loading
a movie clip. For a movie clip to respond to an event, you must write an event handler for
the event on that movie clip. The handler then executes whenever the event occurs. For
details on movie clip event handling, see “Movie Clip Events and Event Handlers” on
page 64.

Unlike other JavaScript objects, movie clip objects cannot be instantiated: that is, you
cannot create a new, original movie clip programatically. A movie clip has no constructor,
and cannot be instantiated using the new operator.

So, you might ask, how do I create a movie clip instance? The simplest method, and the
one to work with first, is to create the movie clip manually in the Composition window.
Later, this section describes two other methods that programatically create copies of
existing movie clips.

Using Help | Contents | Index Back 43

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 43

How to create a movie clip using LiveMotion
LiveMotion objects start out as “regular” (unscriptable) objects. To write scripts to an
object, you must convert the object into a movie clip or a movie clip group. The exception
is objects for which you have defined additional states (besides the normal state, which all
objects have by default). In such a case, LiveMotion automatically converts the object into
a movie clip. As an indication that an object or a group of objects has been turned into a
movie clip, the movie clip icon is displayed to the left of the movie clip or the movie clip
group name on the timeline. Conversion gives the movie clip its own timeline so that it
can play independently of the main composition timeline and independently of any
parent timeline, if the movie clip is nested. Movie clips are equivalent to the time-
independent objects and time-independent groups in LiveMotion 1.0.

Basic methods
You can manually create movie clips in two basic ways: by converting an object to a movie
clip and by creating movie clip groups. Movie clip groups differ from movie clip objects in
that a movie clip group contains one or more child objects (movie clips or regular objects).
A movie clip in itself is not a group and, as such, cannot contain a child object.

To convert an object to a movie clip:

Select one object in the timeline, and click the “Make selected objects movie clips” button
at the bottom of the Timeline window, or choose Object > Movie Clip from LiveMotion’s
main menu.

To create a movie clip group:

Select one or more objects in the timeline, and click the “Group objects and make movie
clip” button at the bottom of the Timeline window, or choose Object > Make Movie Clip
Group from LiveMotion’s main menu. Make Movie Clip Group first groups the selected
objects. Then it turns the group into a movie clip with its own independent timeline.
Movie clip groups can contain regular (unscriptable) objects, and movie clips, as well as
other movie clip groups.

You also can create a movie clip group using this two-step approach:

1 Select one or more objects, and choose Select Object > Group from the main menu.
Alternately, you can press Ctrl+ G (Windows) or Command+G (Mac OS).

2 Click the “Make selected objects movie clips” button at the bottom of the timeline, or
choose Object > Make Movie Clip from LiveMotion’s main menu.

Effect of creating a movie clip and a movie clip group

When you create a movie clip group, you add an extra timeline between the objects in the
movie clip group and the main composition timeline. This is the timeline of the movie clip
group object. Figure 14 compares what happens before and after making a movie clip to
what happens before and after making a movie clip group.

Using Help | Contents | Index Back 44

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 44

Immediately after creating a movie clip group, the movie clip group name is displayed in
the Timeline window. To view the group’s contents, you must expand the movie clip
group’s timeline.

Figure 14 Before and after creating a movie clip and creating a movie clip group

Movie clip hierarchy
All movie clips are arranged in a hierarchy. At the top of the hierarchy is the composition
(also referred to as the _root movie clip or, simply, _root).

In Figure 15, movieClipGroupA is a child of _root. _root also has a second child, movieClipE.
Because movieClipGroupA and movieClipE share the same parent, they are referred to as
siblings. movieClipB and movieClipC are children of movieClipGroupA.

Figure 15 Movie clip hierarchy and z-order

In LiveMotion, you create a parent-child relationship any time you place (or create) a
movie clip or movie clip group on the timeline of another movie clip group or _root. The
movie clip group becomes the parent of the movie clips it contains. For details on creating
movie clip groups, see “How to create a movie clip using LiveMotion” on page 43.

Relationship of movie clip hierarchy to z-order
In the movie clip hierarchy shown in Figure 15, a parent appears above its children.
This hierarchy fails to demonstrate the z-order that you see reflected in the Timeline
window, however. (Recall that z-order is the order in which objects overlap. For details, see
the LiveMotion 2.0 User Guide.) To see the z-order of a movie clip group’s children, you open
the group's timeline.

_root

object

_root

object

_root

object

_root

movieClipGroup

object

Movie Clip

Make Movie Clip Group

_root _root

 movieClipGroupA

 movieClipB

 movieClipC

 movieClipE

movieClipGroupA movieClipE

movieClipC

hierarchy

movieClipB

z-order

Using Help | Contents | Index Back 45

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 45

Ignoring programmatically generated movie clips for the moment, the visual result in the
Composition window of the Timeline z-order window is determined by the order of the
movie clip groups and the order of the movie clips within them. This is still true when
programmatically generated movie clips are added to a composition, as described in
“What the programmatic stack does to the movie clip hierarchy” on page 58. The order
just takes on some more detail.

If, for example, you were to open the Timeline window for the composition shown in
Figure 15, z-order would show the composition timeline at the top and movieClipGroupA,
above movieClipE. But because movieClipGroupA is just a movie clip group containing
movieClipB and movieClipC, the movie clips would appear from front to back in this order in
the Composition window: movieClipB, movieClipC, movieClipE.

Note: To be able to refer to child movie clips in scripting, siblings must have unique names.
Otherwise, you will only be able to access the redundant child name that is topmost in z-
order.

How to access movie clips in the hierarchy
In scripting language, children are accessed as properties of their parent using dot (.)
notation. For example, movieClipGroupA can access its child movieClipB as:

_this._movieClipB

A child can access its parent using the movie clip _parent property. For example, this is
how movieClipGroupA can access _root:

this._parent

The keyword this refers to the movie clip to which a script is added. The above script is
interpreted to mean: “From this movie clip’s position in the object hierarchy, go up one
level in the hierarchy to access the parent of this, which happens to be _root.”

In Figure 15 movieClipB is a grandchild of _root. Here is how _root is accessed from
movieClipB using the _parent property:

this._parent._parent

Movie clip addressing
You most likely will be changing the object hierarchy as you develop your composition. It
is important that you understand movie clip addressing, so you can make the appropriate
changes to movie clip references in your scripts as a result of object hierarchy changes.
This section describes movie clip addressing and makes suggestions on addressing
choices, depending on your situation.

There are two types of movie clip addresses:

• Absolute reference

• Relative reference

Using Help | Contents | Index Back 46

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 46

This section uses the movie clip object hierarchy shown in Figure 16 to illustrate the
addressing types.

Figure 16 Movie clip addressing

What is an absolute reference?
An absolute reference is a reference to a movie clip that begins at the top of the compo-
sition, and walks down through the object hierarchy— parent to child—until reaching the
movie clip of interest. An absolute reference always starts with _root, and uses dot (.)
notation to access the children of _root, and the children's children, and so on until it
obtains the movie clip being referenced. The absolute reference is the same regardless of
where in the movie clip hierarchy the source movie clip (movie clip making the reference)
is located.

Absolute reference example
For example, the absolute reference to movieClipB is:

_root.movieClipGroupA.movieClipB

_root is always at the top of the hierarchy and starts in the absolute reference. In this
example, movieClipGroupA is at the level just above movieClipB. The reference ends with
movieClipB, the movie clip being referenced.

What is a relative reference?
A relative reference is a reference that begins with the source movie clip (movie clip
making the reference) and walks through the movie clip hierarchy, each step being
parent-to-child or child-to-parent until it reaches the movie clip of interest. Relative refer-
ences always start with this, and access the next movie clip in the reference—either as a
child, or through the _parent property—until it obtains a reference to the desired movie
clip. A relative reference is dependent on the relationship between the source movie clip
and the movie clip it is referencing and varies from source to source.

Note: Although using 'this' is optional in the relative reference, this scripting guide begins
all relative references with 'this' so you can more easily distinguish between absolute
references and relative references.

Relative reference examples
Here is an example of the relative reference from movieClipGroupA (shown in Figure 16) to
movieClipGroupE:

this._parent.movieClipGroupE

_root

movieClipGroupA movieClipGroupE

movieClipGroupFmovieClipDmovieClipB movieClipC

movieClipG

Using Help | Contents | Index Back 47

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 47

this refers to movieClipGroupA.

_parent is movieClipGroupA’s parent (in this case, _root) which is up one level in the object
hierarchy from movieClipGroupA. From _root the reference leads down one level to
movieClipGroupE.

This is the relative reference from movieClipC to _root:

this._parent._parent

In this example, _root is movieClipC’s grandparent.

When to use an absolute or a relative reference
You can access all the movie clips in a composition using either type of reference for
movie clip addressing. However, in most cases one reference style makes more sense than
the other.

Here are two general rules:

• Choose the reference style that you believe is least likely to change during your editing
process.

• The simpler reference is usually the better one.

If, for example, you know that the location of the movie clip that you want to access is not
going to change in the object hierarchy, but you are not sure where the source movie clip
that is accessing it is going to be, it is probably better to use an absolute reference. Then,
regardless of where the source movie clip is located in the hierarchy, the reference to the
target will be correct. If you know that the relationship between two movie clips in the
hierarchy is not going to change, but you are not sure where these movie clips will be
located relative to _root, it is probably better to use a relative reference. If you're still
uncertain about the relationship of the movie clips, choose the simpler reference. For
example, it makes more sense for movieClipG to refer to movieClipF as this._parent than as
_root.movieClipGroupE.movieClipF.

More examples of movie clip addressing
This section provides additional examples of movie clip addresses. It identifies all the refer-
ences from the objects in Figure 17 to movieClipD.

Figure 17 Object hierarchy for examples

There is only one absolute reference to movieClipD:

_root.movieClipGroupA.movieClipD

_root

movieClipGroupA movieClipGroupE

movieClipFmovieClipDmovieClipB movieClipC

movieClipG

Using Help | Contents | Index Back 48

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 48

Table 5 shows all the relative references to movieClipD from each of the other movie clips
in Figure 17.

Table 5 Relative references to movieClipD

Movie clip properties and methods

Built-in movie clip properties
As illustrated in the previous example, you can manipulate a movie clip’s properties to
create effects such as animation. Movie clips come with a large number of built-in
properties. You can use these properties to modify the physical features of a movie clip,
such as changing its size or opacity or changing its location.

Table 6 lists all the built-in movie clip properties. The built-in property names start with
the underscore (_) character to distinguish them from properties that you might define
yourself.

Note: The _root movie clip works with all of these properties except _name and _parent.

Table 6 Built-in movie clip properties

Source Relative reference to movieClipD

movieClipGroupA this.movieClipD

movieClipB this._parent.movieClipD

movieClipC this._parent.movieClipD

movieClipD this

movieClipGroupE this._parent.movieClipGroupA.movieClipD

movieClipF this._parent._parent.movieClipGroupA.movieClipD

movieClipG this._parent._parent._parent.movieClipGroupA.movieClipD

Property Description

_alpha Opacity of the movie clip on a scale of 0 (transparent) to 100
(opaque).

_currentframe Position of the playhead in the movie clip's timeline.

_droptarget Absolute reference (in slash notation) of a movie clip over which a
movie clip passes during drag operations performed by the user.

_framesloaded Number of the movie clip frames that have been loaded.

_height Height of the movie clip in pixels.

_name Name of the movie clip. This property does not work with _root.

_parent Movie clip containing this movie clip. This property does not work
with _root.

_rotation Rotation angle of the movie clip in degrees.

Using Help | Contents | Index Back 49

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 49

Built-in movie clip methods
Movie clip methods are functions attached to the movie clip object and are called using
(). Scripting provides a set of built-in movie clip methods that you can use to control a
movie clip in various ways. Included are methods with which you can affect the behavior
of a movie clip, change or find out about a movie clip’s characteristics, load additional SWF
files, and programmatically create duplicates of a movie clip. (Programmatically creating
movie clips is described at length in “Creating movie clips programmatically” on page 55.)

Table 7 lists the built-in movie clip methods and describes their functions. See“Reference”
on page 105 for details on the arguments to each of these methods.

Note: The _root movie clip works with all of these methods except duplicateMovieClip(),
removeMovieClip(), and swapDepths().

Table 7 Built-in movie clip methods

_target Absolute reference of the movie clip in slash notation.

_totalframes Number of frames in the movie clip.

_url URL of the SWF file that this movie clip is a part of.

_visible Boolean indicating whether the movie clip is visible.

_width Width of the movie clip in pixels.

_x Horizontal location of the movie clip in pixels relative to the anchor
point of the movie clip's parent.

_xmouse Horizontal location of mouse pointer in pixels relative to the anchor
point of the movie clip.

_xscale Horizontal percentage scale factor of the movie clip (100% is full
size).

_y Vertical location of the movie clip in pixels relative to the anchor
point of the movie clip's parent.

_ymouse Vertical location of mouse pointer in pixels relative to the anchor
point of the movie clip.

_yscale The vertical percentage scale factor of the movie clip (100% is full
size).

Method Description

attachMovie() Attach the named movie clip (passed in as an argument) to the
movie clip. For details see “Static and programmatic stacks” on page 56.

duplicateMov-
ieClip()

Duplicate this movie clip. For details see “Movie clip global functions
that use _leveln as an argument” on page 63. This method does not work
with _root.

getBounds() Return bounds of the movie clip. The returned object contains the
values in the properties xMin, XMax, yMin, and yMax.

Property Description

Using Help | Contents | Index Back 50

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 50

getBytesLoaded() Return the number of bytes already loaded if the movie clip is exter-
nal (loaded with MovieClip.loadMovie()). If the movie clip is inter-
nal, the number returned is always the same as that returned by
MovieClip.getBytesTotal().

getBytesTotal() Return the size of the movie clip in bytes. When running under the
preview tool in LiveMotion, this number is always 1000.

getURL() Load the URL into the browser.

globalToLocal() Convert the given global point to the movie clip's coordinate space.

gotoAndPlay() Go to the specified label and play. Also a global movie clip method.

gotoAndStop() Go to the specified label and stop. Also a global movie clip method.

hitTest() Return a Boolean value indicating whether the movie clip intersects
with a given clip (passed in as an argument) or given x,y coordi-
nates.

lmSetCurrentState() Change the state of the movie. The LiveMotion state of the movie
must already be defined and appear in the state browser.

loadMovie() Load an external SWF file into the movie clip. The contents of the
movie clip are replaced with the contents of the SWF file.

loadVariables() Load variables into the movie clip fetched from the specified URL.
The movie clip’s onData handler is called when the variables have
been loaded.

localToGlobal() Convert a point in the movie's coordinate space to global coordi-
nates.

nextFrame() Go to the next frame and stop playing. Also a global movie clip
method.

play() Start playing.

prevFrame() Go to the previous frame and stop playing.

removeMovieClip() Delete a duplicated or attached instance. This method does not work
with _root.

startDrag() Start dragging a movie clip. Also a global movie clip method.

stop() Stop playing.

stopDrag() Stop any drag operation in progress.

swapDepths() Swap the movie clips’s depth with that of another movie clip. For
details on depth, see “Movie clip global functions that use _leveln as an
argument” on page 63.This method does not work with _root.

unloadMovie() Unload a movie that was previously loaded with loadMovie().

valueOf() Returns the absolute reference to the movie in absolute terms
using dot (as opposed to slash) notation.

Method Description

Using Help | Contents | Index Back 51

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 51

Hands-on example 4_1: Mouse trailer
This example creates a mouse trailer. It uses the following movie clip properties and
methods:

_x

_y

_xmouse

_ymouse

_xscale

_yscale

duplicateMovieClip()

gotoAndPlay()

The _xmouse and _ymouse movie clip properties establish the position of the mouse relative
to the movie clip position. Each mouse movement causes the manually created movie clip
and several programmatically generated and scaled duplicates to follow the mouse. The
_xscale and _yscale movie clip properties progressively scale the duplicates from smallest
to largest as they are generated in the Composition window.

To create a mouse trailer:

1 Create a new composition. Save the file as Ex4_1.liv.

2 Create an object in the Composition window.

The object will be the base of your mouse trailer. The size of this object will be the size of
the largest object in your trailer. After completing the code for this example, you can go
back later and edit the object to change the appearance of your mouse trailer.

3 Select the object in the Timeline window, convert it into a movie clip, and name it
Base0.

4 Select Base0, and make it a movie clip group by choosing Object > Make Movie Clip
Group from the main menu.

With Base0 inside of a movie clip group, the timeline object hierarchy is:

_root

(Movie clip group) Group of 1 objects

(Movie clip) Base0

5 Select the newly created Group of 1 objects, and name it MouseTrailer. The timeline
object hierarchy changes to:

_root

(Movie clip group) MouseTrailer

(Movie clip) Base0

6 Expand MouseTrailer’s timeline. Drag the end marker of MouseTrailer’s duration bar to
frame 2. Be sure that the endpoint of Base0’s duration bar also is at frame 2.

Both duration bars should be three frames long, as shown in Figure 18.

Using Help | Contents | Index Back 52

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 52

7 Place the current-time marker at frame 0.

8 Click the Scripts button to create a script keyframe at frame 0. This also opens the Script
Editor. In the Script window, enter the code:

this.trailers = new Array(); //an array of objects that trail the
mouse

//create 9 more objects for the trailer

var i;

for (i = 1; i < 10 ; i++)

{

// create the new object, give it a unique name, and

// place it at a unique depth

this.Base0.duplicateMovieClip("Base" + i, i);

// put the new object in the array

this.trailers[i] = this["Base" + i];

// change the scale of the new object

this.trailers[i]._xscale = 100 - i*10;

this.trailers[i]._yscale = 100 - i*10;

}

// put the original in the array

this.trailers[0] = this.Base0;

This code sets up the mouse trailer. It creates a series of duplicates of Base0, places each
duplicate in the array, and scales the objects such that the topmost is the smallest, and the
bottommost is the largest.

9 Close the Script Editor window.

10 In the Timeline window, move the current-time marker to frame 1, and create a label.
Name the label “repeat.”

This example uses labels so that, if you change the frame rate of the composition, the
mouse trailer still works.

11 At frame 1, create a script keyframe. In the Script Editor, enter the code:

Using Help | Contents | Index Back 53

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 53

/* update the position of the trailers

place the topmost trailer at the position of the mouse

*/

this.trailers[9]._x = this._xmouse;

this.trailers[9]._y = this._ymouse;

/*

update the position of the rest of the objects, placing the object

halfway between its current position and the position of the object

in front of it.

*/

var i = 0;

for(i = 0; i< 9 ; i++)

{

this.trailers[i]._x += (this.trailers[i+1]._x -
this.trailers[i]._x)/2;

this.trailers[i]._y += (this.trailers[i+1]._y -
this.trailers[i]._y)/2;

}

Each time this code is called, it updates the position of Base0 and each of the duplicates of
Base0.

12 Close the Script Editor window.

13 Move the current-time marker to frame 2, and click the Scripts button to create a script
keyframe.

This also opens the Script Editor. Figure 18 shows how the MouseTrailer timeline should
appear at this point.

14 In the Script window, enter the code:

this.gotoAndPlay("repeat");

Each time this code is called, it resets the current-time marker to the frame labeled
“repeat,” which is where the code to update the positions is located.

Using Help | Contents | Index Back 54

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 54

Figure 18 Mouse trailer timeline with script keyframes and repeat label

15 Preview.

16 Export this file, and save it as Ex4_1.swf.

Creating movie clip properties and methods
You can create your own movie clip properties and methods. To do so, navigate to the
timeline of the movie clip for which you want to create a property or method, open the
Script Editor. You can enter the code for the definitions in the movie clip’s onLoad handler.

This example creates the movie clip property toggle, which returns a boolean value. The
example uses toggle in the blink() method to change the movie clip’s opacity:

// define the toggle property

this.toggle = true;

// define the blink method

this.blink = function()

{

if(this.toggle == true)

{

this._alpha = 50; // change opacity value to 50

this.toggle = false;

}

else

{

this._alpha = 100; // change opacity value to 100

this.toggle = true;

}

}

You can call the methods that you created in the same way that you call a method on any
object. Provide the name of the movie clip and the method name. The call to blink()
appears as:

this.blink(); // calling the blink method

Using Help | Contents | Index Back 55

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 55

Creating movie clips programmatically
You can create movie clips manually or programmatically. As previously described, you
can manually create movie clips or movie clip groups by creating regular objects using
LiveMotion’s tools in the Composition window and then converting those objects to
movie clips or to movie clip groups. Besides creating a movie clip manually in the Compo-
sition window, you can create a movie clip programmatically using the built-in movie clip
methods: attachMovie() and duplicateMovieClip().

Note: Simple movie clips cannot have children: this includes static and programmatic
children.

Using attachMovie() to create movie clip copies
The attachMovie() movie clip method creates a new copy of an attachable movie clip. The
movie clip copy is attached as a child of movieClip at the specified depth in movieClip’s
programmatic stack. The syntax of this method is:

movieClip.attachMovie(exportName, newName, depth);

Using duplicateMovieClip() to create movie clip copies
The movie clip method duplicateMovieClip() instructs a movie clip to create a copy of
itself. The copy becomes a sibling of the original. The syntax of this method is:

movieclip.duplicateMovieClip(newName, depth);

You can also call duplicateMovieClip() as a global function. Instead of copying itself, the
global function copies a movie clip passed as an argument. The syntax of this function is:

duplicateMovieClip(target, newName, depth);

exportName Sharing name assigned to the movie clip in the Export palette. For details
on creating sharing names for use with the attachMovie() method,
see “Making shareable movie clips (and shareable sounds)” on page 60.

newName New name given to the attached movie clip to differentiate it from other
movie clips in the SWF file.

depth Integer that tells where in movieClip’s programmatic stack to place the
movie clip copy.

newName String indicating the name of the movie clip copy.

depth Integer that tells where in the programmatic stack of the original's parent
to place the movie clip copy.

target Path or reference to a movie clip or a string indicating the location of the
movie clip to copy.

Using Help | Contents | Index Back 56

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 56

Static and programmatic stacks
Note: Because the children of a movie clip group also can themselves be parents (that is,
movie clip groups) with their own children, this guide uses the term ‘movie clip’ for
simplicity in most cases. If the movie clip has children, by definition it really is a movie clip
group.

Movie clips have two stacks: a static stack and a programmatic stack. A movie clip’s static
stack contains its manually created children. A manually created movie clip starts as a
regular object that you create in the Composition window and then convert into a movie
clip. A movie clip has a programmatic stack that contains its programmatically generated
children.

Figure 19 illustrates the static and programmatic stacks of manually created movie clip A.

Movie clip A’s static stack contains its manually created children. Manually created movie
clips become the children of a manually created parent when you create a movie clip
group that contains them. In Figure 19, “A” is the name of the movie clip group that
contains manually created movie clip X and movie clip Y in its static stack.

Immediately above movie clip A’s static stack is its programmatic stack. The programmatic
stack is where programmatically generated movie clips are placed. Although there can be
many levels to the programmatic stack, for simplicity Figure 19 depicts four, with depth
values: 0, 1, 2, and 3. Each level of movie clip A’s programmatic stack can contain a
programmatically generated movie clip that is a child of movie clip A. In the programmatic
stack, the movie clip with the highest numeric depth value is the topmost movie clip
overlapping all others when the movie clip executes in the Composition window in
Preview mode or in the exported SWF file. The movie clip with the next highest numeric
depth value overlaps the movie clip with next highest numeric depth value, and so on.

Figure 19 A’s programmatic and stack stacks

Every movie clip—even those that are created programmatically—makes space for a
programmatic stack.

newName String indicating the name of the movie clip copy.

depth Integer that tells where in the programmatic stack of the original's parent
to place the movie clip copy.

Programmatic stack

Static stack

depth3

depth2

depth1

depth0
X

Y

A

Using Help | Contents | Index Back 57

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 57

Manipulating the stack depth with attachMovie() and duplicate-
MovieClip()
When you create a movie clip programmatically with attachMovie() or duplicateMov-
ieClip(), you assign it a depth value. depth can be any integer value that is 0 or higher. You
are not required to assign the depth values to movie clips generated in any particular
order.

Assume for this example that movie clip A has no programmatic children. You can attach
movie clip instances to movie clip A to create, say, movie clips E, B, and C by making calls to
the attachMovie() method as shown here:

A.attachMovie(exportName, "E", 3);

A.attachMovie(exportName, "B", 0);

A.attachMovie(exportName, "C", 1);

Figure 20 (1) depicts the placement of the programmatically generated movie clips in
movie clip A’s stack after these three calls.

Figure 20 Using attachMovie()

A subsequent call to attachMovie() specifying a depth already occupied just replaces the
current movie clip with a new one. So if you call attachMovie() again as shown here:

A.attachMovie(exportName, "N", 1);

Movie clip N will replace movie clip C, as shown in Figure 20 (2).

The duplicateMovieClip() method also creates movie clip copies. However the copies are
placed in the programmatic stack of the caller’s parent. The new movie becomes a sibling
of the movie from which it was duplicated.

Here is an example of the manually created movie clip X creating a duplicate movie clip D:

X.duplicateMovieClip("D", 2);

(1) (2)

E

depth2

C

B
X

Y

A E

depth2

N

B
X

Y

A

Using Help | Contents | Index Back 58

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 58

Movie clip D is placed in movie clip A’s programmatic stack, because it is a sibling of movie
clip X, as shown in Figure 21

Figure 21 Using duplicateMovieClip()

Using swapDepths() to swap movie clip positions in the program-
matic stack
You can use the swapDepths() method to swap the positions of two movie clips. For this
method to work, both movie clips must be siblings. The syntax is either of two forms:

movieClip.swapDepths(target);

movieClip.swapDepths(depth);

When called with the target argument, the method swaps depths of movieClip and target,
provided that the movie clips share the same parent.

When called with the depth argument, the method places movieClip in a new position in
the programmatic stack of its parent. If that position is occupied, the movie clip occupying
it is moved to movieClip’s old position.

What the programmatic stack does to the movie clip hierarchy
So far you have viewed a composition from the perspective of its movie clip hierarchy and
its relationship to z-order for movie clips that are created manually. For details, see
“Relationship of movie clip hierarchy to z-order” on page 44. Figure 22 illustrates the effect
on the hierarchy when you add programmatically generated movie clips. You can’t view
this order in the Composition window, however, unless you are in Preview mode or you
export the composition to a SWF file. The programmatically generated movie clips appear
during the course of execution at the time they are generated.

target Path or reference to a movie clip or a string indicating the name of the
movie clip to swap depths with movieClip..

depth Integer that tells where to place movieClip. in the programmatic stack of
movieClip’s parent.

E

D

N

B
X

Y

A

Using Help | Contents | Index Back 59

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 59

Figure 22 represents the order of manually and programmatically created movie clips. The
dashed lines separate the parent and children movie clips. Movie clips A and B are
manually created. Movie clip A has two manually created children, W and X. Like A, movie
clip B has two manually created children, Y and Z. Figure 22 (left) shows the manually
created movie clips. Figure 22 (right) shows the location of the programmatic stack for
_root, movie clip A, and movie clip B.

Figure 22 Manually and programmatically created movie clips

Here are two examples that show how attaching and duplicating a movie clip compare.
Say that you create movie clip P with attachMovie() as shown here:

A.attachMovie(exportName, "P", depth);

Movie clip P is placed at the specified depth in A’s programmatic stack. Movie clip P is a
programmatic child of movie clip A.

Now, you create a movie clip L with duplicateMovieClip(), as shown here:

A.duplicateMovieClip("L", depth);

Movie clip L is placed at the specified depth in _root’s programmatic stack, because it is a
sibling of movie clip A.

Table 8 illustrates some more examples of programmatically generated movie clips and
indicates the stack in which the movie clips are placed.

Table 8 Placement of programmatically generated movie clips

Method call Stack and depth where movie clip is placed

A.attachMovie(exportName, "R", 1); R is placed in A’s programmatic stack at depth 1.

B.duplicateMovieClip("M", 0); M is placed in _root’s programmatic stack at
depth 0.

B.attachMovie(exportName, "N", 4); N is placed in B’s programmatic stack at depth 4.

Y.duplicateMovieClip("P", 4); P is placed in B’s programmatic stack at depth 4,
replacing movie clip N.

_root

A

W
X

Y
Z

B

_root

A

W
X

Y
Z

B

_root's programmatic stack

_root's static stack

A's programmatic stack

A's static stack

B's static stack

B's programmatic stack

Using Help | Contents | Index Back 60

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 60

In Table 8, Z’s programmatic stack would be represented as a fourth view of the compo-
sition shown in Figure 22. If Z had manually created children, they would appear in Z’s
manual stack just below its programmatic stack.

Making shareable movie clips (and shareable sounds)
This section describes how to make movie clips available for use with attachMovie(), so
they can be shared in compositions that you create or in compositions created by other
people. The procedures for setting up the mechanism that makes movie clip sharing
possible also applies to sharing sounds.

LiveMotion supports sharing movie clips (and sounds) that can be reused and reproduced
in external SWF files. You can share movie clips with LiveMotion and other applications
that export to the SWF file format. This feature enables you to leverage content from the
vast number of existing SWF files. To make a movie clip shareable, you have to set them up
in your composition as described below.

Setting up shareable movie clips in your composition

To make a movie clip sharable in your composition:

1 Create any simple object in the Composition window, and convert it to a movie clip.

2 Select the movie clip’s name in the Timeline window.

3 Choose File > Export Settings... or Window > Export to bring up the Export palette.

4 In the Export palette menu, select Macromedia® Flash™ (SWF) from the drop-down
menu of file types at the top of the palette.

5 Click the Animation tab (with the bouncing ball icon) shown in Figure 23.

6 To activate the fields and checkboxes beneath the Frame Rate drop-down menu in this
tab, click the Object export settings button at the bottom of the tab. See Figure 23.

Note: Do not click the Multiple selections button next to Object export settings. It can
cause scripts to execute abnormally.

7 Check the Attachable checkbox, and enter a sharing name for the movie clip in the text
box just below it, as shown in Figure 23.

Z.attachMovie(exportName, "Q", 2); Q is placed in Z’s programmatic stack at depth 2
(not shown in Figure 22);

Method call Stack and depth where movie clip is placed

Using Help | Contents | Index Back 61

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 61

Figure 23 Export palette filled out to make myMovieClip shareable

With the Export palette set up as described, you can make more copies of the movie clip
using the attachMovie() method. Here is the syntax:

movieClip.attachMovie(exportName, newName, depth);

If you are attaching a sound instead, this is the syntax of the sound object method:

soundObj.attachSound(exportName);

To use either of these methods, fill in the shareable name for exportName, and provide a
unique name for the copy that you are going to make. The depth argument to attachMov-
ieClip() is described in detail in “Creating movie clips programmatically” on page 55.

If you don’t want the shareable movie clip to appear (or sound to be heard) in your SWF
file until it is accessed by scripting code, you can hide it by turning off its eye icon (movie
clip) or its speaker icon (sound) in the timeline. The movie clip or sound will be included in
the exported SWF file but will not be visible (or audible) until it is accessed dynamically in
a script.

Figure 24 Timeline showing the eye icon toggled on for a movie clip

Accessing movie clips and sounds in an external SWF file
To access a shareable movie clip (or sound) in an external SWF file, you first create a “place-
holder” movie clip in your own composition that you give a sharing name. Then when you
export your composition to SWF file format and play it in the Flash Player, your place-
holder is replaced by the movie clip in the external file that has the same sharing name.

What is important here is that you must know in advance the sharing name of the movie
clip in an external file that you want to use in place of your “placeholder” movie clip. This is
a feature from which you can really leverage, because if sophisticated movie clips exist
that can be reused, there is little reason to reconstruct them when they can be swapped
into a SWF file during playback. Here are the details of the procedure for accessing movie
clips in external files.

To access a movie clip (or sound) in an external SWF:

1 Create a simple object such as an ellipse and convert it to a movie clip.

2 Give the movie clip a sharing name by repeating steps 1 through 6 in “To make a movie
clip sharable in your composition:” on page 60. This procedure uses the sharing name
myMovieClip.

3 In the Export palette Animation tab, check the Use external asset checkbox. See
Figure 23.

Using Help | Contents | Index Back 62

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 62

4 In the Path: field, enter a reference to the external SWF file containing a movie clip that
also has the sharing name (myMovieClip).

Note: You can use a relative or an absolute reference to the external SWF file. If, however,
you use an absolute reference, it must be a reference within the same domain as the final
SWF file. If you plan to move your project to a file server or a Web server, you should use a
relative reference.

When you export your SWF file to the Flash Player, your placeholder movie clip named
myMovieClip is replaced with movie clip with the same name that is located in the
external SWF. If you want to create more copies of myMovieClip from the external SWF file,
you can call attachMovie() and provide “myMovieClip” as the value of the first argument. If
you are working with sounds, call attachSound() and provide the sharing name of the
sound from an external SWF file as the sole argument to this object method.

Levels of the Flash Player
In addition to a programmatic stacking order, there is a stacking order that determines the
overlapping of SWF files when multiple files are loaded into the Flash Player. The first file
loaded is placed in the lowest level of the stack (_level0). If additional SWF files are loaded,
you can place them at any numeric player level above _level0. You can also replace the
current SWF file at any level, including _level0. The contents of the SWF file at the highest
level appears in front of all other SWF files in the player. The contents of the SWF file in the
next lower level appears behind the highest, and so forth. A complete SWF file stack can
consist of multiple SWF files, each of which can contain multiple movie clips with movie
clip duplicates and attached movie clips, each with its own programmatic stack. Figure 25
illustrates SWF file stacking order.

_root's programmatic stack

movieclip1's programmatic stack

movieclip1's static stack
_level2

SWF

_level1

SWF

_level0

SWF

movieclip2's programmatic stack

movieclip2's static stack

_root's programmatic stack

movieclip1's programmatic stack

movieclip1's static stack

movieclip2's programmatic stack

movieclip2's static stack

_root's programmatic stack

movieclip1's programmatic stack

movieclip1's static stack

movieclip2's programmatic stack

movieclip2's static stack

Using Help | Contents | Index Back 63

Adobe LiveMotion Scripting Guide Movie Clips

Using Help | Contents | Index Back 63

Figure 25 Stacking order of SWF files

_leveln (where n represents 0 or a non-negative integer value) is a global property that
you can use to refer to a SWF file when multiple SWF files are loaded into the Flash Player.
It is also an argument to the global functions for loading and unloading SWF files
described below. For more information, see the description of this property in “Reference”
on page 105.

Movie clip global functions that use _leveln as an argument
You can load SWF files into the Flash Player and unload them from the player using the
respective loadMovie() and unloadMovie() global functions.

Using loadMovie() to load a SWF file
You can use the loadMovie() global function to replace the contents of a movie clip or SWF
file level with another SWF file. It replaces an occupied SWF file level or fills an empty one.
The syntax is:

loadMovie(url, target);

Using unloadMovie() to unload a SWF file
You can use the unloadMovie() global function, which removes a movie clip or a SWF file.
The function takes a target parameter. The syntax is:

unloadMovie(target);

url String specifying the location of an external SWF file to load.

target Path or reference to a movie clip indicating the name of the movie clip or
Flash Player level into which the SWF file is loaded.

target Path or reference indicating the name of the movie clip or Flash Player
level to remove from the player.

Using Help | Contents | Index Back 64

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 64

Movie Clip Events and Event
Handlers

Introduction to events
Events are actions that take place at indeterminate times during the playback of a compo-
sition. They are said to occur asynchronously because they occur at any time, not as a
result of reaching a particular keyframe on a timeline. Events include such actions as
pressing a key, clicking a mouse, and loading a movie clip into the Composition window.
For the purposes of this chapter, a state change also is treated as a type of event.

Event types
LiveMotion supports two basic types of events: movie clip and state change events.

Movie clip events are associated with movie clips. They can be further broken down into
system key, mouse, and button events. System-based movie clip events occur as a result of
composition playback or loading variables into a movie clip. Key, mouse, and button
events occur as a result of a user action such as moving the mouse or pressing a key.

State change events are associated with states. A state change event occurs when a movie
clip enters a new state as the result of a call to lmSetCurrentState(). The call could be part
of a remote rollover, part of some user-defined script, or part of the default button handler
scripts added to the movie clip's button handlers when predefined states (over, down or
out) are added to the movie clip.

Event handlers
If you intend to have something occur in your composition as a result of an event that
takes place, you must write an event handler. An event handler contains the code that you
want to execute in response to the event. When the event occurs, the interpreter in the
Flash Player checks if there is a handler written for that event. If there is, the interpreter
executes the event handler code.

Each movie clip event handler has a unique name that describes the action to which that
handler responds. For example, onKeyPress, onMouseDown, and onLoad are the names of
movie clip event handlers that respond to the respective actions: key press, mouse down
stroke, and movie clip loading. The event handler names themselves do nothing until you
write the code to implement them. A user can click the mouse forever, and nothing special
will happen if there is no code written for onMouseDown events. The code you write
causes the interpreter to execute that code each time a mouse click is detected.

A state change handler responds to the action of changing to the state for which that
handler is written. The interpreter executes the handler code whenever the movie clip
enters that state.

Using Help | Contents | Index Back 65

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 65

System-based events and event handlers
System-based events are actions that are generated by the Flash Player. Table 9 lists the
names of the system-based event handlers that LiveMotion supports.

Table 9 System-based event handlers and events

onData
A data event can occur when all the variables are loaded into the movie clip that were sent
by a server-side application as a result of a call to loadVariables(). The onData handler can
notify the composition that the variables are available for use.

A data event can occur in a second situation as well: when a SWF file, or a specific portion
of one, has completed loading into a movie clip or a specified SWF file level using the
loadMovie() function. For information on SWF file levels, see “Levels of the Flash Player” on
page 62.

Note: The following event handlers are mutually exclusive: only one handler can execute
on any given frame.

onLoad
A load event marks the first appearance of a movie clip in the composition. The onLoad
event handler executes only once in the lifetime of a movie clip. It occurs on the first frame
of a movie clip when the movie clip appears in the composition. If the movie clip executes
in a loop that causes its first frame to be replayed, this would not constitute a load event. If,
however, a movie clip is unloaded, reloading it again is a new lifetime, and a load event
occurs on the movie clip’s first frame.

onEnterFrame
An enter frame event occurs when the playhead enters a frame. The onEnterFrame
handler executes on every frame except the first frame, when the onLoad event handler of
the movie clip executes.

onUnload
An unload event occurs when a movie clip is removed from the Composition window. The
onUnload event handler executes on the first frame after the movie clip is removed.

Hands-on example 5_1: Using system-based event handlers to
rotate a movie clip
This hands-on example illustrates how to use the onLoad and onEnterFrame handlers to
define and call a movie clip method that causes a movie clip to rotate itself on every frame.

Event handler Event causing the handler to be called

onData Either of two unrelated situations: Completion of variables loading
into a movie clip or receipt of a portion of an external SWF file by a
host movie clip.

onLoad First appearance of a movie clip in the Composition window.

onEnterFrame Each time the playhead enters a frame, before the frame is rendered.

onUnload Removal of a movie clip from the Composition window.

Using Help | Contents | Index Back 66

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 66

To rotate a movie clip:

1 Create a new composition, and save it as Ex5_1.liv.

2 Create an object in the Composition window, and give it a fill color.

3 Select the object, and choose Object > Movie Clip from the main menu to convert it
into a movie clip.

4 Open the Script Editor by choosing Scripts > Script Editor from the main menu.

5 Click the system-based event handler onLoad in the drop-down menu of handlers.

6 Write an onLoad event handler that defines a function to rotate the movie clip when it
is called. Here is a script that does this:

function rotate(){

this._rotation += 40;

}

7 Click the system-based event onEnterFrame, in the drop-down menu.

8 Write an onEnterFrame event handler that calls the rotate() function. Here is the call:

this.rotate();

This function is called to rotate the movie clip on every frame.

9 Preview.

Hands-on example 5_2: Programmatic bounce
This example creates a programmatic bouncing ball. Like the previous example, it uses
onLoad and onEnterFrame event handlers. This example uses onLoad to initialize condi-
tions, and onEnterFrame, to update conditions as the playhead enters each frame. The
example also demonstrates the use of the hitTest() and getBounds() movie clip methods.

To create a programmatic bounce:

1 Create a new composition, and save it as Ex5_2.liv.

2 Choose Edit > Composition Settings, and set the frames per second to 20.

3 To create the ground, create a rectangle in the Composition window, and position it
where you would like the ground to be.

4 Convert the rectangle into a movie clip, and name it Ground.

5 To create the ball, create an ellipse in the Composition window, and position it at the
location from which you would like it to fall.

6 Convert the ellipse into a movie clip, and name it Ball.

Using Help | Contents | Index Back 67

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 67

The movie clips in the Composition should appear something like the ones that are shown
in Figure 26.

Figure 26 Composition window showing Ground and Ball

7 Move the anchor point of Ball to the bottom of the ellipse.

The anchor point is the position of the object in scripting. This example sets Ball’s position
by its bottom.

8 Double click Ball in the Timeline window, and open the Script Editor.

9 Click the Handler scripts button (if not already toggled on). Then select the onLoad
event handler, and enter this code:

this.dx = 0; // initial velocity in x direction pixels/frame

this.dy = 0; // initial velocity in y direction pixels/frame

this.gravity = 2000; //in pixels/frame^2

this.dt = 1/20; //the amount of time that passes between each frame

// with the frame rate is 20 fps.

This code initializes the velocity of Ball, the value of gravity, and the time between frames.
The initial velocity of Ball is 0 in the x and y directions. The value of gravity is 2000 pixels/
frame/frame. The time between frames is 1/20 of a second, because the composition is set
to 20 frames/second.

10 Click onEnterFrame in the drop-down menu of event handlers, and enter this code for
the handler:

// move the ball in the x direction

this._x = this._x + this.dx * this.dt;

// move the ball in the y direction

this._y = this._y + this.dy * this.dt +
.5*this.gravity*this.dt*this.dt;

// if it hits the ground

if(this.hitTest(_root.Ground))

{

//get the bounds of the ground

Using Help | Contents | Index Back 68

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 68

var bounds = _root.Ground.getBounds(_root);

//set the ball at ground level

this._y = bounds.yMin;

//reverse the direction of the y velocity

this.dy = -(this.dy + this.gravity * this.dt);

}

//otherwise

else

{

//increase the velocity

this.dy += this.gravity * this.dt;

}

This code updates the position and velocity of Ball on every frame. It also checks to see if
Ball has hit the ground. If the movie clip intersects the ground, it is moved to be on top of
the ground, and its y velocity reverse 'bounces' it.

11 Export and open in your browser.

Key events and event handlers
Key events are triggered by key actions that are performed by the user while the movie
clip is in the Composition window. Unlike button events, key events are not tied to the
mouse cursor being over an area of the movie clip for the key handlers to execute. See
“Button events and event handlers” on page 71. The only requirement is that the movie
clip timeline to which the event handler is added is in the Composition window. Table 10
lists the names of the key event handlers supported by LiveMotion.

Table 10 Key event handlers and events

onKeyDown
The key down event is generated by pressing a key on the keyboard. The onKeyDown
event handler simply indicates that a key has been pressed.

onKeyUp
The key up event is generated by releasing a key on the keyboard. The onKeyUp event
handler simply indicates that a key has been released.

Using key event handlers
Because the key event handlers just tell you that a key has been pressed or released (but
not which key), you generally use a key event handler in combination with the Key object.

Event handler Event causing the handler to be called

onKeyDown Pressing a key while the movie clip is in the Composition window.

onKeyUp Releasing a key while the movie clip is in the Composition window.

Using Help | Contents | Index Back 69

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 69

Key object

There is only one Key object. The Key object is a built-in object that provides four built-in
methods that, when used in combination with a key event handler, can be used to get
information about which keyboard keys were pressed, are held down, and are locked
down.

Methods that handle the last key pressed

The getAscii() and getCode() methods return information about the last key pressed
whether or not that key is still pressed. These are useful if you want to know the last key
pressed only. To ensure that you have captured the last key pressed, the methods are only
useful when called in an onKeyDown event handler.

The getAscii() method returns the ASCII value of the last key pressed. Values exist for
uppercase (shifted state) and lowercase characters.

Each key on the keyboard has a numerical value assigned to it. This value is the keycode.
The getCode() method returns the keycode of the last key pressed. At the time this method
is called, the key may no longer be down.

Note: Using the ASCII value alone is less portable than using the keycode, as character
codes may differ across different keyboards. If you are writing scripts for international or
cross-platform use, the keycode may be more useful.

Methods that handle keys pressed at the time the method is called

The isDown() and isToggled() methods handle keys that are pressed when the methods
are called regardless of the key last pressed. If, for example, you press ‘a’ and then press ‘b’,
the event handler onKeyDown detects ‘b’ as the last key pressed. However calling isDown()
on ‘a’ still returns true. These methods are useful in many places such as in onKeyDown,
onKeyUp, and onEnterFrame handlers.

The isDown() method determines if a specific key is currently pressed. isToggled() deter-
mines whether Caps Lock, Num Lock, or Scroll Lock is toggled on or off.

Hands-on example 5_3: Creating an onKeyDown event handler
The onKeyDown handler in this example uses the isDown() method to determine which
Arrow key is being pressed and takes the appropriate action, depending on the key.

To create an onKeyDown event handler:

1 Create a new composition, and save it as Ex5_3.liv.

2 Create a simple shape in the Composition window, and give it a fill color.

3 Select the object. Choose Object > Movie Clip from the main menu to convert it into a
movie clip, and name it Mover.

4 Select Mover in the Timeline window, and choose Scripts > Script Editor to open the
Script Editor.

5 Expand the drop-down menu of events, and click the onKeyDown event in the list.

6 In the Script window, enter the following code for the onKeyDown handler:

if (Key.isDown(Key.LEFT))

_root.Mover._x -= 10;

Using Help | Contents | Index Back 70

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 70

if (Key.isDown(Key.RIGHT))

_root.Mover._x += 10;

if (Key.isDown(Key.UP))

_root.Mover._y -= 10;

if (Key.isDown(Key.DOWN))

_root.Mover._y += 10;

7 Preview.

Click your mouse cursor on the Composition window to make it the active window. Then,
use the arrow keys to move Mover around the window.

Mouse events and event handlers
Mouse events are triggered by mouse actions that are performed by the user while the
movie clip is in the Composition window. Unlike button events, mouse events are not tied
to the mouse cursor being over an area of the movie clip for the handlers to execute. See
“Button events and event handlers” on page 71. The only requirement is that the movie
clip timeline to which the event handler is added is in the Composition window. Table 11
lists the names of the mouse event handlers supported by LiveMotion.

Table 11 Mouse event handlers and events

onMouseMove
A mouse move event occurs when the mouse position changes. The onMouseMove event
handler detects mouse position changes by repeatedly issuing events while the mouse is
being moved. You can use the onMouseMove handler to display a mouse trailer. To create
a mouse trailer, see “Hands-on example 4_1: Mouse trailer” on page 51.

onMouseDown
The onMouseDown event handler is the mouse counterpart to onKeyDown. It detects
pressing the mouse button. Mouse down events can be detected only when the mouse
cursor is in the Composition window.

Event handler Event causing the handler to be called

onMouseMove Any movement of the mouse cursor while the movie clip is in the
Composition window.

onMouseDown Pressing the mouse button while the movie clip is in the Composition
window.

onMouseUp Releasing the mouse button while the movie clip is in the Composi-
tion window.

Using Help | Contents | Index Back 71

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 71

onMouseUp
The onMouseUp event handler is the mouse counterpart onKeyUp. It detects releasing the
mouse button. Mouse up events can be detected only when the mouse cursor is in the
Composition window.

Button events and event handlers
Button event handlers execute only when the mouse cursor is on the movie clip in the
Composition window. Table 12 lists the names of the button event handlers supported by
LiveMotion.

Note: _root does not support button events, because the composition as a whole cannot
not be a button.

Table 12 Button event handlers and events

onButtonPress
Button press events occur on the downstroke of a button click. The onButtonPress handler
should be used when the user must be decisive. As soon as the button is pressed, the
onButtonPress event handler executes.

A mouse down event also is triggered for a button press event if an onMouseDown event
handler is defined.

onButtonRelease
Button release events occur on the upstroke of a button click. Use the onButtonRelease
handler when the user should be allowed to change his mind by keeping a button pressed
until completely off the button.

A mouse up event also is triggered for a button release event if an onMouseUp event
handler is defined.

Event handler Event causing the handler to be called

onButtonPress Clicking the mouse button while the cursor is on the movie clip.

onButtonRelease Releasing the mouse button while the cursor is on the movie clip.

onButtonReleaseOut-
side

After pressing the mouse button and holding the cursor on the
movie clip, moving the mouse cursor off the movie clip and releasing
the button.

onButtonRollOver Moving the mouse cursor on the movie clip.

onButtonRollOut Moving the mouse cursor off the movie clip.

onButtonDragOver After pressing the mouse button while the mouse cursor is on the
movie clip, moving the cursor off and then back on the movie clip.

onButtonDragOut After pressing the mouse button while the mouse cursor is on the
movie clip, moving the mouse cursor off the movie clip.

Using Help | Contents | Index Back 72

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 72

onButtonReleaseOutside
An event in which the button is released outside is one in which the button must initially
be pressed while the mouse cursor is on the movie clip. The event is then generated by
holding the mouse button down and moving off the movie clip before releasing the
button. The onButtonReleaseOutside event handler detects this type of action.

A mouse up event also is triggered for a button release outside event if an onMouseUp
event handler is defined.

onButtonRollOver
A button rollover event occurs when the mouse cursor is moved onto the movie clip (but
not pressed). This action is handled by the onButtonRollOver handler.

A mouse move event also is triggered for a button rollover event if an onMouseMove
event handler is defined.

onButtonRollOut
A button rollout event occurs when the mouse is moved off the movie clip (but not
pressed). This action is handled by the onButtonRollOut handler.

A mouse move event also is triggered for a button rollout event if an onMouseMove event
handler is defined.

onButtonDragOut
A button drag out event is similar to a button rollout event except the mouse button is
pressed while the mouse is moved off the movie clip. An onButtonDragOut handler
should be written to handle this action.

A mouse move event also is triggered for a button drag out event if an onMouseMove
event handler is defined.

onButtonDragOver
A button drag over event starts with the mouse button pressed while on the movie clip.
Then the mouse is moved off the movie clip (generating the onButtonDragOut event) and
moved back on again—all movement taking place while the mouse button is pressed. An
onButtonDragOver handler should be written to handle this action.

A mouse move event also is triggered for a button drag over event if an onMouseMove
event handler is defined.

Hands-on example 5_4: Creating a simple button event handler
It is important to understand that a button is simply a movie clip that has a button event
handler defined for it. This example creates a button.

To create a button event handler:

1 Create a new composition, and save it as Ex5_4.liv.

2 Create an object in the Composition window, and give it a fill color.

3 Select the object, and choose Object > Movie Clip from the main menu to convert it
into a movie clip.

4 Name the movie clip Rotate_button.

5 Open the Script Editor by choosing Scripts > Script Editor from the main menu.

Using Help | Contents | Index Back 73

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 73

6 In the Script Editor, click the Handler scripts button if the button is not already toggled
on.

7 Expand the drop-down menu of events, and click the onButtonPress event.

8 Enter this code for the onButtonPress event handler:

this._rotation += 30;

The code causes Rotate_button to rotate itself 30 degrees each time the user presses the
button.

9 Preview.

Hands-on example 5_5: Creating a toggle button
For LiveMotion 1.0 users, recall that you created a “button” by applying predefined or
custom states to an object in the Rollovers palette. This example creates a simple toggle
button that has two states: normal and on. By clicking the button, it switches between
these states. This example is very useful for creating user interface elements such as radio
buttons and check boxes.

To create a toggle button:

1 Create a new composition, and save it as Ex5_5.liv.

2 Create an ellipse in the Composition window.

3 Give the ellipse the color red.

Figure 27 Composition with ellipse

4 In the States palette, give the object a custom state, and name the state “on.”

This automatically converts the object to a movie clip.

5 Select the “on” state, and give it the color blue.

6 In the Timeline window, select your newly created movie clip, press Enter, and name it
Toggle.

7 With Toggle still selected, open the Script Editor by choosing Scripts > Script Editor
from the main menu.

8 Click the Handler scripts button (if not already toggled on).

9 Click the onLoad event in the drop-down menu of events, and enter this script:

toggleState = false;

This onLoad event handler code creates the variable toggleState, and initializes it to false.

Using Help | Contents | Index Back 74

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 74

The variable will track the state and value of Toggle.

10 In the Handler scripts drop-down menu, click the onButtonPress event, and enter the
following script:

if (toggleState == false)

{

this.lmSetCurrentState("on");

toggleState = true;

} else {

this.lmSetCurrentState("normal");

toggleState = false;

}

This onButtonPress event handler code creates a simple toggle effect. It switches the
current state of Toggle between “normal” and “on,” depending on the value of toggleState.

11 Preview.

12 Click on Toggle to switch between its normal state and on states.

State change events and handlers
State change events are triggered when the state of a movie clip changes. All state
changes are the result of a call to lmSetCurrentState(). However this call could be part of a
remote rollover, part of some user defined script, or part of the default button handler
scripts associated with the predefined button states (normal, over, down, and out) that
give them their default button behavior. For additional information on the default button
handlers, see the next section.

Automatically generated button event handlers
LiveMotion automatically generates code in the movie clip's button handlers to
implement the default button behavior for the predefined states. These automatically
generated button event handlers are set up to change the state of the movie clip in
responses to the appropriate button event. The method used to change the state of the
movie clip is lmSetCurrentState(). This is the same method that you can use anywhere in
your scripts to change state. If, for example, you define the over state for an object,
LiveMotion automatically generates this code to set the state to the over state when the
mouse cursor is over the movie clip. LiveMotion generates this code to return the movie
clip to the normal state when the mouse cursor is no longer over the movie clip.

Hands on example 5_6: Experimenting with automatically
generated button event handlers
This example creates a predefined state for a button, resulting in LiveMotion automatically
generating button event handlers. Then it comments out the automatically generated
code to demonstrate that the state change will not occur.

Using Help | Contents | Index Back 75

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 75

To automatically generate a button event handler:

1 Create a new composition, and save it as Ex5_6.liv.

2 Create an ellipse in the Composition window.

3 Give the ellipse the color red.

4 In the States palette, add the over state to the ellipse.

This automatically converts the object to a movie clip.

5 Select the over state, and give it the color blue.

6 In the Timeline window, select your newly created movie clip, and name it Button.

7 Open the Script Editor by choosing Scripts > Script Editor from the main menu.

8 Click the Handler scripts button (if not already toggled on).

9 Click the arrow to the right in the drop-down menu to display all the event handlers.
The asterisk (*) to the left of these button handlers in the list indicates that code (shown
here) has automatically been generated.

10 Select the onButtonRollover event. The script associated with this event is:

this.lmSetCurrentState("over");

11 Preview the rollover to verify that it is working.

Button should turn blue when the mouse cursor is over it.

12 Exit Preview mode.

13 Open the Script Editor, and click the Handler scripts button.

14 Select the onButtonRollover event, and comment out the automatically generated
code, as shown here.

// this.lmSetCurrentState("over");

15 Preview.

When you pass the mouse cursor over Button, its color does not change from its normal
state color to the blue color you gave it for the over state, because you disabled the over
state change.

The LiveMotion button behaviors of the predefined states are the default. You don’t need
to retain these behaviors. You can easily define a new button behavior style. Just comment
out LiveMotion’s button handler code as you did in this example and write your own. For
example, you could create a toggle behavior for the down state such that clicking the
button places it in the down state until such time that the button is clicked again to place
it in the normal state.

button handler code generated

onButtonRollover this.lmSetCurrentState("over");

onButtonRollOut this.lmSetCurrentState("normal");

onButtonDragOut this.lmSetCurrentState("normal");

Using Help | Contents | Index Back 76

Adobe LiveMotion Scripting Guide Movie Clip Events and Event Handlers

Using Help | Contents | Index Back 76

Be aware that if you simply delete the LiveMotion state change script instead of
commenting it out, you may not recall why a behavior is not working as it was originally
defined.

Using Help | Contents | Index Back 77

Adobe LiveMotion Scripting Guide Dynamic Data

Using Help | Contents | Index Back 77

Dynamic Data

Introduction to dynamic data
In LiveMotion, dynamic data refers to the ability to dynamically take data input from a user
to set variables and to respond based on the user’s specific query. This usually involves
communication with a remote Web server or a database. Communications occur over
standard Web browser protocols (HTTP or HTTPS) or over TCP/IP sockets. Responses are
displayed within a LiveMotion movie clip or within a browser window.

Forms and text fields
Dynamic data applications are usually based on forms. LiveMotion makes it easy to create
powerful forms. A well-designed form ensures that you are soliciting the right information
from the user. A form may consist of a single text field into which the user enters infor-
mation, or it may consist of dozens of text fields strategically laid out on the screen so that
it’s crystal clear to see how to fill out the form.

Dynamic data user input occurs via the mouse or the keyboard. Mouse input is handled by
LiveMotion’s onMouseMove, onMouseDown, and onMouseUp event handlers. Keyboard
input can also be handled entirely via the event system using the Key object, but for most
dynamic data applications it is handled using LiveMotion text fields in conjunction with
on-screen buttons.

Text field properties

Text fields are used to create forms and to display information received from remote
sources. This information can be updated by the user and returned in the same—now
updated—text field variables.

LiveMotion allows you to set a variety of text field properties. This occurs through the
Properties palette. For example, dynamic text fields can have the Password flag set from
the Properties palette pop-up menu (shown in Figure 28), which prevents characters from
being displayed when the user types in his password.

Figure 28 Properties palette pop-up menu

Using Help | Contents | Index Back 78

Adobe LiveMotion Scripting Guide Dynamic Data

Using Help | Contents | Index Back 78

Another important property that is set from the text field Properties palette is the variable
name assigned to the text field. The variable name is typed into the Var field (see
Figure 29). For example, in the following code, display is the name of the text field, and "My
first text field" is the string value associated with it.

_root.display = "My first text field";

Figure 29 Properties palette

The contents of the display variable can be updated by the user, and/or sent to a remote
application, and/or modified and returned by a remote application. These tasks are usually
accomplished using the loadVariables(), loadVariablesNum(), loadMovie(), loadMovieNum(),
and getURL() global functions and the loadVariables(), loadMovie(), and getURL()
MovieClip object methods to send and (in the case of the loadVariables() calls) receive
variables over the network.

Two other important properties that are set from the text field Properties palette are
whether the text field allows users to enter text when it is exported as a SWF file, and
whether the text in the text field is interpreted as HTML code. Both of these properties are
important to keep in mind when creating text fields for dynamic data applications.

To create a text field:

1 Select the text field tool.

2 Click and drag to create the bounding box of the text field.

3 Type into the text field to add default text (initialize the text field with a value).

4 In the Timeline window, select the text field (named Dynamic Text by default).

5 Choose Object >Edit Name from the main menu, and enter a new name for the text
field.

6 Choose Window >Properties. In the Properties palette, enter a variable name in the Var
field as shown in Figure 29. Then set any other properties of the text field you wish to
specify.

Once you assign a variable name to a text field, the text in that text field becomes the
value of the variable. The text field is of type string. Even if there are only numbers in the
text field, it is still considered a string. If you want to work with the data as numbers, use
the parseInt() global function. After the text field has been initialized with a string, any
value that you enter into the text field—or any modification that you make to the text in
the text field—causes the value of the variable to change. In addition, through the
scripting language, text field variables can be manipulated like any other variables. Note
that when the text field is exported or when it is previewed, any changes to it are automat-
ically saved. Also, there is no real need for a form’s “enter” or “submit” button other than to
move the user to the next text field or to submit the text field variables to the server.

Using Help | Contents | Index Back 79

Adobe LiveMotion Scripting Guide Dynamic Data

Using Help | Contents | Index Back 79

You will probably want to set the Show Border\Background option in the pop-up menu of
the Properties palette (see Figure 28). This places borders around your text fields so that
they are easy to see. In addition, the Properties palette allows you to set the text font and
size, and to indicate which fonts to embed.

loadVariables(), loadMovie(), and getURL()
Taking user input is one way of using dynamic data variables. Other ways include using
the loadVariables(), loadVariablesNum(), loadMovie(), loadMovieNum(), and getURL() global
functions and the loadVariables(), loadMovie(), and getURL() movie clip methods. These
functions and methods allow you to interact with an external data source, usually an
application running on a Web server. The loadVariables() and loadVariablesNum() global
functions and the movieClip.loadVariables() method allow you to send and receive
variable values. The other global functions and movie clip methods only allow you to send
variables and their values—the results may then be sent back by the application as a SWF
file (loadMovie()) or an HTML page (getURL()).

Note: The loadVariables() global function, the loadVariablesNum() global function, and
the movieClip.loadVariables() method are asynchronous in nature—the variables aren’t
loaded immediately. The timeline continues while data is being retrieved and loaded, at
the end of which the onData event is raised. The _root movie clip, however, has no onData
event, so an immediate child of _root is usually used.

To send variables, you must specify whether the GET or POST HTTP method is used. For
example, the last argument of the loadVariables() global function is used to specify the
HTTP method:

loadVariables("http://www.myServer.com/cgi-bin/stockdata.pl",this,"GET");

For all of the loadVariables(), loadMovie(), and getURL() calls, the HTTP method argument
is always the last argument and is optional; in each case this argument also indicates that
you want to send the variables. If provided, the argument causes LiveMotion to send all of
the movie clip’s user-defined variables, including the text field variables, according to the
method indicated. The Flash Player automatically URL-encodes the outgoing variable
strings. The GET method has a 1024-character limit and sends the variables tacked onto the
URL that is used to contact the remote application (see the loadVariables() invocation
above). The POST method is used for larger amounts of data; this data is sent separately
from the URL, and thus data sent via POST is not visible to the user of the application, so is
more secure. For more information regarding the syntax used to send and receive
variables, see “Reference” on page 105.

Note: Repeated use of GET with the same variables and their values might cause the Web
browser to cache the data that’s supposed to be returned. To avoid this, use POST.

In addition to encoding outgoing variable strings, the player decodes incoming variable
strings. To encode and decode, the Flash Player uses the application/x-www-form-urlen-
coded MIME format. During encoding, this format:

• replaces spaces with a plus (+) sign;

• replaces non-alphanumeric characters by %HH where HH are two hexadecimal digits
representing the ASCII code of the character;

• represents line breaks (for multi-line text fields) as CR LF pairs—%0D%0A;

Using Help | Contents | Index Back 80

Adobe LiveMotion Scripting Guide Dynamic Data

Using Help | Contents | Index Back 80

• lists fields in the order that they appear with the variable name separated from the
value by an equal sign (=) and from each other by an ampersand (&).

Table 13 summarizes how variables are sent and received using LiveMotion.

Table 13 Calls for Remote Transmission and Reception of Variables

On the server side, the application that receives and sends variables and values can be
written in any of a variety of server side scripting languages. The SWF file format is not
dependent upon server technology. Some of the more common scripting languages are
Perl, Microsoft Active Server Pages (ASP), and PHP. The scripting languages used to create
server-side applications that send and receive data have built-in facilities for handling the
types of communications described above. The exception is an application that can
generate SWF files “on the fly.” Typically, such an application is highly customized.

How to create a form and send its data to a server
Use the following steps as a guideline for developing a form that takes user input, sends
the input to a server, and receives data back. The steps can be modified to create and
populate a form that is updated by the user; the contents of the updated text field
variables would then be sent to
the server.

Global Function or Movie
Clip Method

Use

loadVariables() global func-
tion

Sends and receives variables. Loads received variable values into
a movie clip identified by player level, path, or movie clip refer-
ence.

loadVariablesNum() global
function

Same as loadVariables() global function, except that variable
values can only be loaded into a movie clip identified by player
level.

loadMovie() global function Sends variable values. Receives a SWF file, possibly generated
based on the values supplied. This file can then be loaded into
either a player level or a movie clip, replacing existing contents.

loadMovieNum() global func-
tion

Same as loadMovie() global function except that the SWF file
can only be loaded into a player level.

getURL() global function Sends variable values. Receives results as an HTML file for display
in a browser window. Also allows you to execute JavaScript and
VBScript code and to execute the fscommand global function.

movieClip.loadVariables()
method

Same as loadVariables() global function except that variable
values can only be sent from and loaded into movieClip.

movieClip.loadMovie()
method

Same as loadMovie() global function except that the variables
can only be sent from and the SWF file can only be loaded into
movieClip.

movieClip.getURL() method Same as getURL() global function except that variable values
can only be sent from movieClip.

Using Help | Contents | Index Back 81

Adobe LiveMotion Scripting Guide Dynamic Data

Using Help | Contents | Index Back 81

To create a dynamic data form in LiveMotion:

1 Start a new composition.

2 Create a text field.

3 Give the text field the variable name input and set the Allow Input option.

4 Create a button with three predefined states—normal, over, and down.

5 Select the text field and the button and make them into a movie clip group.

6 Give the movie clip group the name formGroup.

To create a form to receive data from a server:

1 Create a text field.

2 Give the text field the variable name output.

3 Select the text field, and make it a movie clip group with the name outputGroup.

To send data to a server:

1 Double click on formGroup in the Timeline window.

2 Select the button.

3 In the States palette, select the down state.

4 In the Timeline window, double click on the down state for the button to open the
Timeline window for the down state. Then click on the Scripts button.

5 Enter the following:

loadVariables("http://www.myserver.com/processForm.asp",
"_root.outputGroup","POST");

The final step adds the down state button code that will load variables from the formGroup
movie clip and post them to the ASP page on www.myserver.com. This code also causes the
loading of the variables from processForm.asp. Those variables are then placed into the
movie clip outputGroup. If those variables already exist in outputGroup, they are updated.
Otherwise, new variables are created that are actually properties of the outputGroup movie
clip (to be accessed in the same way as any other movie clip properties or movie clip
variables).

The ASP file can specify any number of variable-value pairs. Each pair must be separated
with an ampersand and spaces must be URL-encoded so they are replaced with a + sign, as
described above where the rules for the application/x-www-form-urlencoded MIME
format are outlined.

For example:

output=the+form+submitted+correctly&additionalData=valid&eof=1

Using Help | Contents | Index Back 82

Adobe LiveMotion Scripting Guide Dynamic Data

Using Help | Contents | Index Back 82

XML communications
LiveMotion also supports transmission and reception of eXtensible Markup Language
(XML) files. Using XML, a LiveMotion application can take input from the user, generate an
XML file, and send the file to a server application that parses the XML and stores the data.
The application then responds with either an XML file for processing by a movie clip or
with an HTML file for display in a Web browser window.

The LiveMotion XML class enables you to load, parse, send, build, and manipulate XML
document trees. Unlike HTML, which uses a defined set of tags, XML allows you to define
your own document tags. For example, the following code shows a simple XML document:

<?xml version=’1.0’?>

<doc>

<p>Text</p>

<p>More text</p>

<p>See also <xref doc="bestDoc.xml"/></p>

</doc>

LiveMotion allows you to either build an XML document from scratch or read in and
modify an existing XML document.

Only version r41 and above of the Flash 5.0 Player support XML (r41 was released in
December, 2000). Use the getVersion() global function to get the version of the Flash
Player that you currently have installed. Use of XML with the Flash Player is not dependent
on the browser; your browser does not need to support XML to use this capability.

The LiveMotion XML class’s send(), load(), and sendAndLoad() methods are used to send and
retrieve XML documents to/from URLs. Table 14 provides a brief description of each
method. The difference between send() and sendAndLoad() is that the Web server’s
response to send() is an HTML file, whereas the response to sendAndLoad() is an XML
document. Since they tend to be too large for the GET method, the POST HTTP method is
usually used for sending and receiving XML documents. To support parsing of the data
returned from the XML methods, the methods also work in Preview mode. The table
below summarizes the XML class’s methods used to send and retrieve XML documents.
See “Reference” on page 105 for further details.

Table 14 XML Class Methods for Sending and Receiving XML Data

XML socket communications
LiveMotion also supports XML socket-based communications. Communications using
XML sockets are implemented using the XMLSocket class.

Method Description

load() Gets an XML file from a URL.

send() Sends an XML file to a URL; expects the server to respond with an
HTML page for display in a browser window.

sendAndLoad() Sends an XML file to a URL; expects the server to respond with an XML
file for processing and display in a LiveMotion movie clip.

Using Help | Contents | Index Back 83

Adobe LiveMotion Scripting Guide Dynamic Data

Using Help | Contents | Index Back 83

The XMLSocket class implements a client socket that allows the Flash Player to commu-
nicate with a server using an “open” connection. A connection using a socket is useful
because it remains open—that is, an IP connection doesn’t have to be made between the
client and the server each time communications occur between the Flash Player and a
server, as is required when the HTTP protocol is used. A “permanent,” two-way, TCP/IP link
is set up instead. This enables the Flash Player to listen for incoming messages and process
them as they come in. On the server side, this creates a connection where the server can
push data directly down to the Flash Player. Real-time communications are enabled.

Only the XMLSocket object uses a full-duplex, continuous, TCP/IP connection. The getURL(),
loadVariables(), loadMovie(), XML.send(), XML.load(), and XML.sendAndLoad() calls use the
HTTP or HTTPS protocol.

The primary characteristics of an XML socket-based application between a Flash Player
movie clip and a server are the following:

• There must be a server-side application to wait for the socket connection request and
respond to the Flash Player.

• XML messages are sent over a full-duplex TCP/IP connection.

• Each XML message is a complete XML document, terminated by a zero byte (ASCII null
character).

• An unlimited number of XML messages can be sent and received over a single
connection.

If these are not requirements of your application, use LiveMotion’s other dynamic data
functions, objects, and methods, already discussed in this chapter.

The XMLSocket implementation in LiveMotion is event-based. These events are coded
separately from the built-in event handlers in the LiveMotion scripting environment. The
implementation uses four event handlers that use user-defined callback functions to
respond to activity on the socket-based connection. The implementation’s three core
methods are used to set up a connection and to send XML files. The XMLSocket methods are
summarized in Table 15. The XMLSocket event handlers are summarized in Table 16. See
“Reference” on page 105 for further details.

Using Help | Contents | Index Back 84

Adobe LiveMotion Scripting Guide Dynamic Data

Using Help | Contents | Index Back 84

Table 15 XMLSocket Class methods

Table 16 XMLSocket event handlers

The application on the server side of an XML connection is more sophisticated than a
standard Perl or ASP application. These tend to be applications that work well over UNIX
sockets connections on TCP/IP networks and they are often written in Java. They usually
host custom-written front ends tuned to handle stringent XML translation and generation.

Processing incoming data

The following is an example of XMLSocket code used to process incoming data.

function showData(dataXML)

{

 // act on the XML from the socket

 trace(dataXML.firstChild.nodeValue);

}

// define the socket

dataSocket = new XMLSocket();

// connect to the server at a specified port

dataSocket.connect("http://www.adobeServerOrSomething.com/", 1024);

dataSocket.onXML = showData;

Method Description

close() method Closes an open socket connection.

connect() method Creates a socket connection to a specified server.

send() method Sends an XML object to the server.

Event Handler Description

onClose() event handler Callback function that is called when a connection is
closed by the server.

onConnect() event handler Callback function that is called when a connection is
created.

onData() event handler Callback function that is called when data is received but
has not yet been parsed as XML.

onXML() event handler Callback function that is called when data has been
received and parsed into an XML object hierarchy.

Using Help | Contents | Index Back 85

Adobe LiveMotion Scripting Guide Script Editor

Using Help | Contents | Index Back 85

Script Editor

Introduction to the Script Editor
This section provides details on LiveMotion’s Script Editor. It describes the capabilities of
each physical component and explains how you can use the functionality to assist in
developing your scripts. Every hands-on example in this guide uses the Script Editor at a
very high level. You learned how to open the Editor to write scripts to timelines and to
movie clip states. This section takes you through all the Script Editor functionality. As you
start to create more advanced scripts, you can refer to this section to take advantage of
the Script Editor’s features.

Exploring the Script Editor
The Script Editor enables you to write and maintain scripts for your composition while you
are in the LiveMotion application. To access the Script Editor you must have a new or an
existing composition open in LiveMotion.

Script Editor window
Figure 30 shows the Script Editor window.

Figure 30 Script Editor main window
A. Movie clip navigator B. Scripting syntax helper C. Composition browser
D. Automation syntax helper E. Go to previous script F. Go to next script
G. Handler scripts H. State scripts I. Keyframe scripts J. Find K. Syntax highlighting
L. Scripting helper window M. Script window N. Description window

The title bar of the Script Editor window displays a reference to the movie clip whose
scripts you are currently editing.

The Script Editor main window is further divided into three main informational views.
Clockwise starting with the top left in Figure 30, these are:

A B C D E F G H I J K

M

N

L

Using Help | Contents | Index Back 86

Adobe LiveMotion Scripting Guide Script Editor

Using Help | Contents | Index Back 86

• Scripting helper window

• Script window

• Description window

The Scripting helper window displays the tools that can assist you in developing scripting
code. These are: Movie clip navigator, Scripting syntax helper, and Composition browser.
The Automation syntax helper is not available for creating scripts to be exported to the
Flash Player.

The Script window is where you write JavaScript code clip, or view existing scripts, for the
current movie clip. To enter code, you can select code from the Scripting syntax helper, or
you can simply insert the cursor in this window and start writing code.

The Description window displays descriptions of syntax that you select using the Scripting
syntax helper button (described below).

You can adjust the size of the Script Editor’s windows. By placing your mouse cursor on the
vertical border between the upper windows, you can drag the border left or right to
expand or contract window width. By placing your mouse cursor on the horizontal border
separating the upper windows from the lower and dragging the mouse up or down, you
can expand or contract window height.

Script Editor buttons
The Script Editor displays a row of buttons just beneath the title bar. Table 17 summarizes
the functionality of each of these buttons. Details on these buttons follow the table
summary.

Table 17 Script editor buttons and windows

Button or window Description

Movie clip navigator Lists all the movie clips in a composition in hierarchical order.
Selecting a movie clip in this window allows you to see and edit
scripts on that movie clip.

Scripting syntax helper Lists the LiveMotion 1.0 Behaviors, ActionScript syntax, and Jav-
aScript syntax. Selecting an item in the list displays a brief
description of the argument in the Description window. Dou-
ble-clicking a syntax entry adds the item's syntax to the current
script.

Composition browser Lists all the movie clips, labels, and states in the composition.
Selecting an item in the list displays the reference text that will
be entered in the Script window. Double-clicking a movie clip,
label, or state adds the respective movie clip reference, label
name, or state name to the current script.

Automation syntax helper Lists and describes the global objects and properties in the Jav-
aScript core supported by automation scripting and the pre-
defined objects, their methods, and properties in the
Automation scripting DOM. For details on automation scripts,
see the LiveMotion 2.0 SDK. This button is available when the
export
format is Live Tab when you are editing an automation script.

Using Help | Contents | Index Back 87

Adobe LiveMotion Scripting Guide Script Editor

Using Help | Contents | Index Back 87

Movie clip navigator
The Movie clip navigator indicates which movie clip timeline you are on. When you first
open the Script Editor, the Movie clip navigator button is toggled on, and its contents are
displayed to the Scripting helper window. Initially, the window displays an expanded list
of all the manually created movie clips in hierarchal order.

Note: If any movie clip names in your composition contain invalid JavaScript characters
such as spaces or punctuation, they are displayed in red in the Movie clip navigator
window.

Go to previous script Switches the script view to the previously edited script. This
button works like the Back button in a Web browser.

Go to next script Switches the script view to the more recently edited script. This
button works like the Forward button in a Web browser.

Handler scripts Lists all the event handlers in the drop-down menu for which
you can write scripts.

This button, as well as the State scripts and Keyframe scripts
buttons described below, display a blue triangle when they
contain scripts. The contents displayed in the drop-down menu
(handler or state names, or keyframe numbers) depend on
which of the three buttons is selected. Items in this menu dis-
play an asterisk if scripts exist on them.

State scripts Lists all states in the drop-down menu that are defined for the
current movie clip. The list contains the normal state, and it can
include the predefined states over, down, and out, plus any
custom states defined for the movie clip.

Keyframe scripts Lists all script keyframes in the drop-down menu for the current
movie clip.

Drop-down menu Displays the keyframes, event handlers, or states for the current
movie clip. The contents displayed depend on which of the
previous three buttons is selected. Items in this menu display an
asterisk if scripts exist on them.

Find Opens a dialog for finding and replacing text strings in the cur-
rent script.

Syntax highlighting Turns syntax highlighting on and off.

Script window Displays existing scripts and new scripts written to the current
movie clip.

Description window Displays brief descriptions of the syntax listed in the Scripting
syntax helper.

Scripting helper window Displays contents of the Scripting Editor’s Movie clip navigator,
syntax helper, and browser buttons. The contents displayed
depend on which of the buttons is selected.

Button or window Description

Using Help | Contents | Index Back 88

Adobe LiveMotion Scripting Guide Script Editor

Using Help | Contents | Index Back 88

In the Movie clip navigator, the movie clips on the composition timeline are one indent
from the left margin. Any movie clips on the timelines of these movie clips are two indents
from the left margin, and so on. Figure 31 shows the movie clip hierarchy for the mouse
trailer that you created in“Levels of the Flash Player” on page 62. The movie clip icon is
displayed to the left of each movie clip name.

Figure 31 Movie clip navigator

Expanding and collapsing movie clips

By clicking the triangle to the left of a movie clip group name in the Movie clip navigator,
you can expand or collapse the movie clip children in that group. For example, if you were
to click the triangle next to MouseTrailer shown in Figure 31, Base0 is no longer displayed.
Clicking Composition collapses everything in the movie clip hierarchy below the compo-
sition timeline.

Navigating the hierarchy

The Movie clip navigator can assist you in locating the correct movie clip to add new
scripts to or to locate existing scripts. To access a movie clip’s scripts, for example, select
the movie clip name in the hierarchy. This takes you to the movie clip’s timeline and also
updates the contents of the Script Editor’s title bar to display the absolute reference to
that movie clip. If a movie clip has states defined for it, and a state other than normal is
selected when the Script Editor is open, that state appears in parentheses to the right of
the movie clip reference. To access the children of movie clip groups, click the triangle next
to the group to expand it as necessary, until you locate the child whose scripts you want to
access. Once you have accessed the movie clip that you want, you can either select the
type of script you want to write, or you can open an existing script you want to access by
using the Handler scripts, State scripts, or Keyframe scripts buttons.

Scripting syntax helper
The Scripting syntax helper assists you with creating the syntax for the LiveMotion 1.0
behaviors, the ActionScript syntax (that is, the extensions to JavaScript that enable you to
manipulate movie clips), and the JavaScript core syntax. With the Scripting syntax helper
button toggled on, the window displays these syntax groups. By clicking the triangle to
the left of a group name, the contents of that group are expanded and displayed to the
Scripting helper window. The LM 1.0 Behaviors group lists all the LiveMotion 1.0 behaviors
by behavior name. The ActionScript Syntax Helpers group lists the names of all JavaScript
extensions for writing movie clip scripts. The JavaScript Syntax Helpers group lists the
JavaScript core utilities.

Using Help | Contents | Index Back 89

Adobe LiveMotion Scripting Guide Script Editor

Using Help | Contents | Index Back 89

Syntax helper group entries

The ActionScript and JavaScript groups contain entries with of their own with triangles
next to them that you can click to expand to another level of entries. Clicking the triangle
next to the Movie Clip Methods entry in the ActionScript Syntax Helpers group, for
example, expands the entry to show an alphabetical list of all the movie clip methods. See
the Scripting helper window in Figure 32.

Selecting a movie clip method name causes a brief description of that movie clip method
to be displayed in the Description window, as shown in Figure 32. The information briefly
describes what that method does, what the syntax of the method is, and what each
argument to the method is. This is helpful when you want quick access information about
how to use the method. For detailed descriptions of all the scripting interfaces that
LiveMotion supports, see “Reference” on page 105.

Selecting the method name and pressing Enter (or double clicking the method) generates
the syntax for the method in the Script window, as shown in Figure 32.

Figure 32 Generating the syntax for the duplicateMovieClip() method

The Scripting syntax helper generates the syntax, but it is up to you to fill in the necessary
argument values and anything else that would make the script complete. In the example
shown in Figure 32, you would need to provide values for the arguments, newName and
depth. Use the descriptions displayed to help you determine what these arguments
represent. If you know the reference to the movie clip making the call, you can fill that in.
Otherwise, you can use the Composition browser, described next.

Composition browser
The Composition browser assists you with generating the correct reference to a movie
clip, state, or label. At any time, you can click the Composition browser button to open the
browser in the Scripting helper window. The window displays all the movie clips in a
composition in hierarchical order. The movie clips on the composition timeline are one
indent from the left margin. Any movie clips on the timelines of these movie clips are two
indents from the left margin, and so on. Just below the movie clip name, the browser
displays the movie clip’s states and any label names on its timeline. At the bottom of the
Scripting helper window, two radio buttons allow you to choose between generating the
absolute or relative reference for a movie clip.

Using Help | Contents | Index Back 90

Adobe LiveMotion Scripting Guide Script Editor

Using Help | Contents | Index Back 90

Clicking once on a movie clip name, on a label, or on a state generates the respective
movie clip reference (in the style specified by the radio button), label name, or state name
in the Description window. This information is generated in this window for your infor-
mation only. You do not need to delete it. Clicking once on another movie clip name, label,
or state removes the current information and generates information for the movie clip,
label, or state that you just clicked. This feature enables you to use the Composition
browser to examine for possible use the movie clip references, labels, and states at any
time as you write scripts.

Double clicking a movie clip name, label, or state generates the respective reference to
that movie clip (in the style specified by the radio button), label name, or state name in the
Script window at the position of the cursor.

Note: If you decide not to use the syntax elements you generated, you must select and
delete them from the window.

Using the Composition browser with the Scripting syntax helper

You also can use the Composition browser in combination with the Scripting syntax
helper to fill in placeholders or arguments requiring a movie clip reference, label name, or
state name.

When you double click an item from the Scripting syntax helper, the code that gets passed
into the editing area (Script window) may not be complete. You may be required to fill in
argument values and movie clip references. The procedure below uses the duplicateMov-
ieClip() movie clip method as an example.

To complete a call to the duplicateMovieClip() method:

1 Click the Scripting syntax helper to display the ActionScript syntax helpers in the
Scripting helper window.

2 Expand the Movie Clip Methods list, and double click the movie clip method
duplicateMovieClip(). (Do not double click the global method by the same name for this
example.)

The code that gets displayed in the Script window appears as:

.duplicateMovieClip(newName, depth)

If you check the Description window, you will see that the complete syntax for using the
duplicateMovieClip() method requires that you provide a reference to the movie clip that
you want to duplicate. This is indicated by the movieclip “placeholder” in the complete
syntax, which is shown here:

movieclip.duplicateMovieClip(newName, depth)

3 To correctly form the reference, click the Composition browser button to display its
contents in the Scripting helper window.

4 Click the radio button at the bottom of the Scripting helper window to select the
absolute or relative reference to the movie clip. (This procedure uses the absolute
reference.)

5 Place the mouse cursor in the Script window to the left of the dot (.) in the syntax.

Using Help | Contents | Index Back 91

Adobe LiveMotion Scripting Guide Script Editor

Using Help | Contents | Index Back 91

6 In the Composition browser, select the movie clip that you want to reference. Then
press Return.

The correct reference to the movie clip is inserted before the dot, for example:

_root.myMovieClip.duplicateMovieClip(newName, depth)

To complete this script, you would provide the appropriate values for the arguments
(newName and depth), and add a semicolon to the end of the statement. You can use the
Description window to help you with the meanings of arguments. Here is an example of a
completed statement:

_root.myMovieClip.duplicateMovieClip("movieClipA", 3);

Go to previous script and Go to next script buttons
These buttons take you to the previous and next scripts. Go to previous script behaves like
the Back button in a browser. It traces the history of where you have been. Each time you
press the button, it displays the script that was displayed just before the script that
currently is being displayed. The Go to next script button does just the opposite: pressing
the button displays the script after the current script, and so on. If either of these buttons
is active, that means there is another script to go to in that direction. When a button dims,
you have reached the last script in the direction you are going. Using these buttons
enables you to navigate back and forth through the scripts you have displayed.

Handler scripts button
The Handler scripts button is used to write event handler scripts to a movie clip and to
access existing handlers that have been written. To quickly check if the current movie clip
has any event handlers written to it, see if the Handler scripts button has a blue triangle in
the top right corner (as shown in Figure 33). If it does, that means event handlers are
present.

To quickly see which event handlers have code written for them, see if an asterisk appears
in front of the handler’s name in the Handler drop-down menu. This indicates that scripts
have been written for that handler. Figure 33 shows the Handler scripts button activated.
The asterisk indicates that an event handler is written for onLoad. Event handler scripts
may be written for any number of the handlers listed in the drop-down menu.

To edit an existing handler, or to write a new handler for current movie clip:

1 Click the Handler scripts button to display the current movie clip's handlers in the drop-
down menu.

2 Expand the drop-down menu, and select the event handler name from the list.

3 Write or edit the handler code in the Script window.

You can use the Scripting syntax helper and the Composition browser to help you.

Figure 33 Handler scripts button activated

Using Help | Contents | Index Back 92

Adobe LiveMotion Scripting Guide Script Editor

Using Help | Contents | Index Back 92

State scripts button
The State scripts button is used to write scripts to movie clip states and to access existing
state scripts. If the State script button has a blue triangle in the top right corner (as shown
in Figure 34), one or more states has scripts written for them.

To quickly see which states have code written for them, see if an asterisk appears in front
of the state’s name in the state script drop-down menu. This indicates that scripts have
been written for that state. The Script Editor window in Figure 34 shows the States scripts
button activated and an asterisk indicating that a script is written to the down state.

To edit an existing state script or to write a new script to a state to the current movie
clip:

1 Click the State scripts button to display the current movie clip's states as the contents of
the drop-down menu.

Note: States must be defined for a movie clip before they can be edited in the Script Editor.

2 Select the state name in the drop-down menu.

3 Write or edit the script in the Script window.

You can use the Scripting syntax helper and the Composition browser to help you.

Figure 34 States scripts button activated

Keyframe scripts button
The Keyframe scripts button is used to write scripts to script keyframes in a movie clip’s
timeline and to access existing keyframe scripts. A quick way to tell if a movie clip's
timeline contains script keyframes is to look for a blue triangle in the top right corner of
the keyframe scripts button (as shown in Figure 35). If present, this means script keyframes
with custom scripts exist on the timeline.

To quickly see which frames have code written for them, see if an asterisk appears in front
of the frame number in the drop-down menu of frame numbers. This indicates that scripts
have been written for that frame. The Script Editor window in Figure 35 shows the
keyframe scripts button toggled on and an asterisk indicating that a keyframe script is
written to frame number 2.

To edit a keyframe script:

1 Click the Keyframes scripts button to display the current movie clip's script keyframes
as the contents of the drop-down menu.

Note: Script keyframes must be added on the movie clip's timeline before they can be
edited in the Script Editor.

2 Select the script keyframe from in the drop-down menu.

3 Write or edit the script in the Script window.

Using Help | Contents | Index Back 93

Adobe LiveMotion Scripting Guide Script Editor

Using Help | Contents | Index Back 93

You can use the Scripting syntax helper and the Composition browser to help you.

Figure 35 Keyframe scripts button activated

Find button
The Find button enables you to find and replace text in a script. Clicking the Find button
displays a text box in which you can enter the text you are looking for. You have several
options for performing your search, including the direction of the search and whether the
search should be case sensitive. You can replace the text with text you enter in the Replace
with: text box. Click the Close button to end a search.

Note: Only the currently displayed script is searched, not all scripts in the composition.

Figure 36 Find text box

Syntax highlighting button
The Syntax highlighting button is for your coding convenience. If, for example, you want
to see all reserved words and values in your code, you can toggle the button to turn on or
off the blue font for reserved words and the red font for values.

In addition to these buttons, keyboard shortcuts in the online Help file can assist you in
making selections and navigating through code.

Using Help | Contents | Index Back 94

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 94

Debugger

Introduction to the Debugger
LiveMotion has an integrated JavaScript source Debugger that enables you to trouble-
shoot scripts while you are in the LiveMotion application. This section describes the
capabilities of the Debugger’s physical components. It explains how you can use the
functionality to assist you in troubleshooting your scripts, and it includes short examples
illustrating its features. It also describes how the Debugger can be used in combination
with the Script Editor and the Script Console window to check output at various points
during the execution of the scripts. As you start to create more advanced scripts, you can
refer to this section to review ways to take advantage of the Debugger’s powerful features.

Exploring the Debugger

Bringing up the Debugger
To bring up the Debugger, you must have a composition open. You can choose if and
when to activate the Debugger by selecting the appropriate menu item from the Script
Editor menu (in LiveMotion’s main menu). The Script menu provides three options:

These Debugger modes also are available from a drop-down menu in the Debugger
window so that you can change modes during a debugging session.

Debugger window

Main informational views

The main Debugger window is further divided into three main informational views.
Clockwise starting with the top left in Figure 37, these are:

• Call stack window

• Variable window

• Source window

Scripts > Don’t Debug Disables the Debugger.

Scripts > Debug on Errors Brings up the Debugger when it detects an error during
execution of your composition.

Scripts > Debug at Start Brings up the Debugger when you start Preview mode.

Using Help | Contents | Index Back 95

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 95

You can adjust the size of the windows by dragging your mouse on the window frames.
By dragging your mouse on the vertical border between the Call stack and Variable
windows, you can move the frame left or right to expand or contract window width.
Dragging your mouse up or down on the horizontal border separating the upper windows
from the Source window expands or contracts window height.

Figure 37 Debugger window
A. Call stack window B. Variable window C. Source window

The Call Stack window contains a list of functions that are in the process of being
executed. The call stack gets deeper as functions call other functions. As functions
complete, they are no longer displayed.

The Variable window displays the following types of information:

• Arguments to functions

• Current movie clip object and detailed information about this object’s properties

• Local variables

• User expressions

• Debugger messages

Figure 38 Variable window

A

B

C

Using Help | Contents | Index Back 96

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 96

By expanding the triangles next to entries in this window, you can view additional window
content. Figure 38 shows the types and values of arguments and local variables in the
Source code shown in Figure 37.

The Source window displays the JavaScript source when a script is stopped. The position
indicator (red arrow in the column on the left side of the window in Figure 37) indicates
where execution has most recently stopped. For example, Figure 37 shows the position
indicator just before a call to the trace() function.

Debugger buttons
Just beneath the Debugger window title bar, there is a row of Debugger buttons. These
buttons are shown in .

Debugger buttons
A. Run B. Stop C. Kill D. Step E. Step into F. Step out G. Add variable

Table 18 summarizes the functionality of each of the Debugger buttons. Details on these
buttons follow the table.

Table 18 Debugger buttons

Run

The Run button plays a composition until it reaches one of the following:

• The next script to execute

• The next breakpoint

• The next error encountered

You can halt execution by clicking the Stop button or exiting Preview mode.

Stop

The Stop button halts execution of the current script. When the button is active, it displays
in red.

Button Description

Run Plays a script.

Stop Halts execution.

Kill Terminates script execution and the Debugger.

Step Single-steps through instructions.

Step into Single-steps through instructions, and enters each function
call that is encountered.

Step out Executes the code out of a function call, and stops on the
instruction immediately following the call to the function in
the calling script.

Add variable (+) Adds variables and calculations entered in the Variable field
to the User Expressions list.

A B C D E F G

Using Help | Contents | Index Back 97

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 97

Kill

The Kill button terminates the debugging session, closes the Debugger, and returns to
your normal editing session. Terminating a debugging session clears all variable values
that may have been set during the session. However, it does not clear breakpoints you
may have set in the Editor. For details, see “Setting breakpoints” on page 99.

Step

The Step button single-steps through instructions. Clicking Step at a method call executes
the entire method rather than executing one instruction at a time with each click of the
button. Say, for example, the Source window shows the position indicator arrow to the left
of the blink() method, as shown here:

-> _root.Ellipse.blink();

This location is immediately before the call to blink(). Assuming that there are no errors or
breakpoints in blink(), clicking Step executes the entire blink() method, and moves the
position indicator arrow to the next script instruction following the method call.

Step into

The Step into button single-steps through instructions in the code, and enters each
function call that is encountered. The blink() method definition shown below illustrates
how this button works:

_root.Ellipse.ctr = 0; // make ctr an Ellipse movie clip property

// Define the blink method

->_root.Ellipse.blink = function(){

this.ctr++;

// _alpha is a built-in movie clip property

if(this.ctr % 2 == 0)

this._alpha = 50;

else

this._alpha = 100;

}

When the position pointer is to the left of the function call, as shown here, clicking Step
into takes you to the first statement inside the blink() method:

-> _root.Ellipse.blink();

The first statement in blink() is:

// Define the blink method

_root.Ellipse.blink = function(){

-> this.ctr++;

.

.

Using Help | Contents | Index Back 98

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 98

.

Each additional click of the Step into button executes the next instruction in blink().

Step out

The Step out button executes the code out of a function call, and stops on the instruction
immediately following the call to the function. Using this button, you can quickly finish
executing the current function after determining that a bug is not present. Say, for
example, that you are clicking Step into to execute each line of code in blink() to monitor
the value of ctr (as described in “Watching variables” on page 98). If you find that the
value is correct, you can click Step out. Doing so executes the remainder of the code in
blink(), and places the position pointer at the beginning of the next instruction to
execute.

Add variable

The Add variable (+) button accepts the names of variables and expressions that you enter
into the Variable field to the immediate left of this button. It displays the current values in
the Variable window. If an expression has not yet been defined, the Variable window
displays “undefined.”

Watching variables
While executing code in the Debugger, you can enter the names of variables and expres-
sions whose values you want to monitor in the Variable window.

Figure 39 Variable window with ctr variable

To watch a variable:

1 Click your cursor in the expression entry field to the immediate left of the Add variable
button

2 Enter the name of a variable or an expression whose value you want to monitor.

3 Click the Add variable button (or press Enter) to display the variable and its current
value in User Expressions in the Variable window.

To save multiple variables in the Variable window, click the Add variable button instead of
pressing Enter. Pressing Enter does not save a variable in the window. The variable is
replaced by the next one that you enter.

See Figure 39. As long as a variable exists inside the scope of the currently executing
function, its value is updated and displayed in the Variable window. If execution takes the
Debugger outside of the function, the variable goes out of scope and is no longer
displayed.

Using Help | Contents | Index Back 99

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 99

Setting breakpoints
A breakpoint is a signal to the interpreter to stop execution at that location, and to enter
the Debugger. You can set breakpoints to verify that the values of variables, the current
display in your composition, and so forth are what you expect at that point during
execution. Breakpoints can be set in two locations: in the Script Editor and in the
Debugger.

To set a breakpoint in the Script Editor:

1 Open the Script Editor, and navigate to the script where you want to set a breakpoint.

2 Click your cursor in the gray column to the left of the code line at which you want
execution to halt.

A breakpoint appears as a red dot in the column. Figure 40 shows a breakpoint to the
immediate left of the call to gotoAndPlay().

Figure 40 Setting a breakpoint in the Script Editor

Executing to the breakpoint set in the Script Editor

To execute to the breakpoint just set in the previous section, begin Preview mode.
Execution halts at the breakpoint, bringing up the Debugger.

Figure 41 shows the Debugger display after execution has stopped as a result of the
breakpoint set in the Script Editor. After executing code to a breakpoint, you can perform
whatever checks you need such as noting the values of variables you entered into the
Variable window or observing changes in the Composition window.

Figure 41 Debugger display after setting a breakpoint in the Script Editor

Using Help | Contents | Index Back 100

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 100

To set a breakpoint in the Debugger:

1 Click your cursor in the column to the immediate left of the code line where you want
execution to halt.

2 Optionally, enter into the Variable window the names of any variables or expressions
whose values you would like to examine after executing to the breakpoint.

Clearing breakpoints
To clear a breakpoint, click the red dot again. You can clear a break point from either the
Script Editor or the Debugger regardless of where it was set.You can also disable break-
points by Alt clicking them (Windows) or Opt clicking them (Mac OS). This changes them
from red to grey.

Setting a breakpoint in the MouseTrailer onLoad script
This example leverages on the MouseTrailer hands-on example in “Levels of the Flash
Player” on page 62. The code for executing the MouseTrailer is given in that section.

To set a breakpoint in MouseTrailer:

1 Open your MouseTrailer composition in LiveMotion (Ex4_1.liv).

2 From the Scripts menu, select the Debugger mode, Debug on Start.

3 Preview.

When the Debugger first opens, it displays the MouseTrailer’s onLoad() handler code in the
Source window.

4 Click in the gray column to the left of this statement in the onLoad handler:

this.trailers[i]._xscale = 100 - i * 10;

This sets a breakpoint just before the statement, as shown in Figure 42.

Figure 42 Setting a breakpoint in the Debugger

Using Help | Contents | Index Back 101

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 101

To examine variable values in the Mouse Trailer example:

1 After setting the break point in the previous steps, click the Run button to execute to
the breakpoint.

Figure 8.8 shows the result of executing to the breakpoint.

Figure 43 Checking results up to the breakpoint

2 Click the cursor in the expression entry field, and enter this expression:

this.trailers[1]

3 Click the Add variable button to insert the expression into the User Expressions in the
Variable window.

4 By clicking the triangle next to this.trailers[1] in the Variable window, you find the
values for all of Base1’s properties.

Using Help | Contents | Index Back 102

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 102

Figure 44 shows just some of the information about a movie clip that you can track in the
Debugger.

Figure 44 Variable window showing values of Base1’s properties

Using the Console window
The Console window displays script output and the results of trace() statements. The
types of output displayed include string values, numeric values, and object types. You can
keep the window open to monitor results as you preview your composition or execute it
in the Debugger.

Exploring the Console window
To open the Console window, choose Window > Script Console from LiveMotion’s main
menu.

Figure 45 Console window

To write to the Console window using a trace() statement:

1 Open the Script Editor, and navigate to the location where you want to insert a trace()
statement.

2 Insert a trace() statement in your script for each variable value that you want to be
displayed to the Console window.

Using Help | Contents | Index Back 103

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 103

For example, to view the values of a counter variable in a for loop, you would insert a
trace() statement as shown here:

var i;

for (i = 1; i < 10 ; i++)

{

trace (i);

.

.

.

By playing back your composition in Preview mode or executing through the code in the
Debugger, each argument to a trace() statement is printed to the Console window
followed by a new line character. Each time that you display values to the Console window,
the results are appended to the previous output.

3 To clear the display, click the trash icon at the bottom of the window.

Using the Console window with the Debugger

You can use the Console window along with the Debugger to watch your variable values.
Say for example, you set a breakpoint in your code. Up to that point, you can insert trace()
statements to monitor the values of certain variables until you identify variables that you
would like to see in greater detail in the Debugger. You also can insert trace() statements
to record multiple values that a variable takes on while a script is executing.

Comparing Console window output to Debugger output

Although the Console window displays a continuous stream of output for trace() state-
ments that are evaluated, it provides less detailed output than you can obtain by watching
the evaluation of expressions in the Debugger’s Variable window. You can choose which
type of output that you want to examine, depending on your needs.

This section looks at the for loop code in MouseTrailer’s onLoad handler. For details on
MouseTrailer, see “Levels of the Flash Player” on page 62.

The code below creates the trailers array and fills the array elements with duplicated
movie clips. Two trace() statements have been added to the code shown here. One will
display the value of the counter i, and the other, the value of the array element
this.trailers[i]:

for (i = 1; i < 10 ; i++)

{

trace (i);

// create the new object, give it a unique name, and

// place it at a unique depth

this.Base0.duplicateMovieClip("Base" + i, i);

// put the new object in the array

this.trailers[i] = this["Base" + i];

Using Help | Contents | Index Back 104

Adobe LiveMotion Scripting Guide Debugger

Using Help | Contents | Index Back 104

trace (this.trailers[i]);

// change the scale of the new object

this.trailers[i]._xscale = 100 - i*10;

this.trailers[i]._yscale = 100 - i*10;

}

The Console window shown in Figure 46 displays the trace() statement output after five
iterations of the for loop.

Figure 46 Console output

This is less information than you would get had you entered the counter i and
this.trailers[i] into the Debugger Variable window and stepped through the for loop
five times. When you expand the triangle next to this.trailers[i], the Debugger displays
detailed information about the current movie clip, some of which is shown in Figure 47.

Figure 47 Variable window showing the results of evaluating i and this.trailers[i]

Using Help | Contents | Index Back 105

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 105

Reference

Introduction
This chapter lists and describes all syntax (keywords, statements, operators, objects,
methods, properties, and globals) recognized by the LiveMotion scripting engine.

Keywords and statement syntax
Table 19 lists and describes all keywords and statements recognized by the LiveMotion
scripting engine.

Table 19 Keywords and Statement Syntax

Keyword/State-
ment

Description

break Standard JavaScript construct. Exit the currently executing loop.

continue Standard JavaScript construct. Cease execution of the current loop itera-
tion.

do - while Standard JavaScript construct. Similar to the while loop, except loop con-
dition evaluation occurs at the end of the loop.

false Literal representing boolean false.

for Standard JavaScript loop construct.

for - in Standard JavaScript construct. Provides a way to easily loop through the
properties of an object.

function Used to define a function.

if/if - else Standard JavaScript conditional constructs.

#include Standard directive used to import files located elsewhere.

null Assigned to a variable, array element, or object property to indicate that it
does not contain a legal value.

return Standard JavaScript way of returning a value from a function or exiting a
function.

switch Standard JavaScript way of evaluating an expression and attempting to
match the expression's value to a case label.

this Standard JavaScript method of indicating the current object.

true Literal representing boolean true.

undefined Indicates that the variable, array element, or object property has not yet
been assigned a value.

Using Help | Contents | Index Back 106

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 106

Operators
Table 20 lists and describes all operators recognized by the LiveMotion scripting engine.
Table 21 shows the precedence and associativity for all operators.

Table 20 Description of Operators

var Standard JavaScript syntax used to declare a local variable.

while Standard JavaScript construct. Similar to the do - while loop, except loop
condition evaluation occurs at the beginning of the loop.

with Standard JavaScript construct used to specify an object to use in ensuing
statements.

Operators Description

new Allocate object.

delete Deallocate object.

typeof Returns data type.

void Returns undefined value.

. Structure member.

[] Array element.

() Function call.

++ Pre- or post-increment.

-- Pre- or post-decrement.

- Unary negation or subtraction.

 ~ Bitwise NOT.

! Logical NOT.

* Multiply.

/ Divide.

% Modulo division.

+ Add.

<< Bitwise left shift.

>> Bitwise right shift.

>>> Unsigned bitwise right shift.

< Less than.

<= Less than or equal.

> Greater than.

Keyword/State-
ment

Description

Using Help | Contents | Index Back 107

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 107

Table 21 Operator Precedence

>= Greater than or equal.

== Equal.

!= Not equal.

& Bitwise AND.

^ Bitwise XOR.

| Bitwise OR.

&& Logical AND.

|| Logical OR.

?: Conditional (ternary).

= Assignment.

+= Assignment with add operation.

-= Assignment with subtract operation.

*= Assignment with multiply operation.

/= Assignment with divide operation.

%= Assignment with modulo operation.

<<= Assignment with bitwise left shift operation.

>>= Assignment with bitwise right shift operation.

>>>= Assignment with bitwise right shift unsigned operation.

 &= Assignment with bitwise AND operation.

 ^= Assignment with bitwise XOR operation.

 |= Assignment with bitwise OR operation.

, Multiple evaluation.

Operators (Listed from highest precedence —top row—to lowest) Associativity

[], (), . left to right

new, delete, -(unary negation), ~, !, typeof, void,++, -- right to left

*, /, % left to right

+, -(subtraction) left to right

<<, >>, >>> left to right

<, <=, >, >= left to right

==, != left to right

& left to right

Operators Description

Using Help | Contents | Index Back 108

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 108

Reference for Objects, Methods, Properties, and Globals
The remainder of this chapter lists and describes all predefined identifiers recognized by
LiveMotion.

Arguments Object
Description

The Arguments object provides two types of information about an executing function:

• the name of the function itself, and

• the arguments that were passed to the function.

The Arguments object is a static object—to use the object, do not create an instance using
a constructor. With square bracket notation, the object can be used as an array to access
the values of the arguments passed to the function.

Properties

Methods

None.

Arguments.callee Property
arguments.callee

Description

The callee property holds a reference to the currently executing function. This property
can only be read.

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

=, /=, %=, <<=, >>=, >>>=, &=, ^=, |=, +=, -=, *= right to left

, left to right

callee See “Argu-
ments.callee Prop-
erty” on page 108.

Name of the currently executing function.

length See “Argu-
ments.length Prop-
erty” on page 109.

Number of parameters passed to the currently executing
function. This value can be used to access the individual
parameters themselves.

Operators (Listed from highest precedence —top row—to lowest) Associativity

Using Help | Contents | Index Back 109

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 109

Example

function selfReferenceTest()

{

if (arguments.callee == selfReferenceTest)

trace("true");

else

trace("false");

}

selfReferenceTest();//prints "true"

Arguments.length Property
arguments.length

Description

The length property stores an integer specifying the number of parameters passed to the
currently executing function. The property can be used to access the names of the
individual arguments themselves, using the arguments object as an array. The length
property, however, is not zero-based, so always has a value of one greater than the largest
index into the array. This property can only be read.

Example

function baseball(glove, bat)

{

trace(arguments.length);

trace(arguments[0]);

trace(arguments[1]);

}

baseball("catchers", "wooden");

//prints

//2

//catchers

//wooden

Using Help | Contents | Index Back 110

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 110

Array Object
Description

The Array object provides the ability to create and manipulate arrays of data. If the Array
constructor is invoked with a single integer value, the value sets the array length. If two or
more values are used, they become the initial values of the array elements, and the array
length is determined by the number of values provided. Similarly, a single non-numeric
value can be used to initialize the array with a single element with that value.

To call the Array object’s methods, you must create a new object using the constructor.
Alternatively, you may use the square bracket syntax (e.g., var x = [a,b] populates the
first two elements of the array with the values a and b). If the Array constructor is invoked
without passing arguments to Array, then an empty array is created with zero elements.

Constructor

new Array()

new Array(length)

new Array(element0, ...elementn)

Parameters

Properties

Methods

length A non-negative integer indicating the number of elements in the
array.

element0, ...elementn One or more values that are assigned as array elements.

length See “Array.length
Property” on
page 112.

Number of elements in the array.

concat() See “Array.concat()
Method” on
page 111.

Concatenate elements to an existing array to create a
new array.

join() See “Array.join()
Method” on
page 112.

Join all elements of the array into a string.

pop() See “Array.pop()
Method” on
page 113.

Pop the last element in the array (return the value and
remove from the array).

push() See “Array.push()
Method” on
page 113.

Push an array element onto the end of the array (add an
element).

Using Help | Contents | Index Back 111

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 111

Array.concat() Method
arrayObj.concat(value1, ...valuen)

Description

The concat() method concatenates elements to an existing array to create a new array. The
original array is left unmodified. If an array is provided as a parameter to concat(), each of
its elements are appended as separate array elements to the end of the new array.

Parameters

Returns

A new array formed by the concatenation of the specified values or arrays to the current
array.

Example

var a=[1,2,3];

b = a.concat(4,5);

c = b.concat([5,6]);

d = c.concat([7,8],[9,10]);

reverse() See “Array.reverse()
Method” on
page 114.

Reverse the order of the elements in the array in place
(last element becomes first; first element becomes last).

shift() See “Array.shift()
Method” on
page 114.

Same as pop()except the first element is returned and
removed from the array.

slice() See “Array.slice()
Method” on
page 115.

Copy a subset of an existing array to create a new array
consisting of just those elements.

sort() See “Array.sort()
Method” on
page 116.

Sort the elements of the array in place.

splice() See “Array.splice()
Method” on
page 117.

Add or delete array elements.

toString() See “Array.toString()
Method” on
page 119.

Convert an array to a string of comma-delimited values
(can also be achieved using join() without a parameter).

unshift() See “Array.unshift()
Method” on
page 119.

Add one or more elements to the beginning of the array
and return the new length of the array.

value1, ...valuen Any number of values to be added to the end of the array. Can also be
arrays to be concatenated to the current array.

Using Help | Contents | Index Back 112

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 112

e = 0;

for(i=0; i<d.length;i++)

e = e + d[i];

trace(e);//prints 60

See also

“Array.push() Method” on page 113, “Array.pop() Method” on page 113, “Array.shift()
Method” on page 114, “Array.unshift() Method” on page 119

Array.join() Method
arrayObj.join()

arrayObj.join(delimiter)

Description

The join() method joins all elements of the array into a string; each element is separated
by delimiter.

Parameters

Returns

The string containing the joined elements and delimiters.

Example

baseball = new Array("bat","ball");

baseballString = baseball.join();

trace(baseballString);// prints "bat,ball"

newString = baseball.join(" + ");

trace(newString);// prints "bat + ball"

See also

“Array.toString() Method” on page 119, “String.split() Method” on page 220, “Array.sort()
Method” on page 116, “Array.reverse() Method” on page 114

Array.length Property
arrayObj.length

Description

The length property is a positive integer that represents the length of the array. Since array
indices start with 0 (zero-based indexing), length is one greater than the last index value of
the array. length is initialized when the array is created. This property can be read or
written.

delimiter (Optional) A string to separate each element of the array. If omitted, the array
elements are separated with a comma and results are the same as those achieved
with arrayObj.toString().

Using Help | Contents | Index Back 113

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 113

Example

baseball = new Array();

trace(baseball.length);//prints 0

moreBaseball = new Array("bat", "ball");

trace(moreBaseball.length);//prints 2

moreBaseball[2] = "glove";

trace(moreBaseball.length);//prints 3

Array.pop() Method
arrayObj.pop()

Description

The pop() method pops the last element of the array, returns the value of the element,
removes the element from the array, and decreases length by 1.

Returns

The value of the deleted array element.

Example

var stack = [1,2,3];

trace(stack.pop());//stack is now [1,2] and pop prints 3

See also

“Array.push() Method” on page 113, “Array.shift() Method” on page 114, “Array.unshift()
Method” on page 119, “Array.concat() Method” on page 111

Array.push() Method
arrayObj.push(value1, ...valuen)

Description

The push() method appends one or more values onto the end of the array and increases
length by n.

Parameters

Returns

The new length of the array.

Example

var stack = [1,2,3];

trace(stack.push(4,5));//stack is now [1,2,3,4,5] and push() prints 5

for(i=0; i<stack.length;i++)

value1, ...valuen Any number of values to be pushed onto the end of the array.

Using Help | Contents | Index Back 114

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 114

trace(stack[i]);

//prints

//1

//2

//3

//4

//5

See also

“Array.pop() Method” on page 113, “Array.shift() Method” on page 114, “Array.unshift()
Method” on page 119, “Array.concat() Method” on page 111

Array.reverse() Method
arrayObj.reverse()

Description

The reverse() method reverses the order of the elements in the array in place (last
element becomes first; first element becomes last).

Example

var baseball = ["bat", "ball", "glove", "base"];

for(i=0; (i != 4); ++i)

trace(baseball[i]);

//prints

//bat

//ball

//glove

//base

baseball.reverse();

for(i=0; (i != 4); ++i)

trace(baseball[i]);

//prints

//base

//glove

//ball

//bat

See also

“Array.sort() Method” on page 116

Array.shift() Method
arrayObj.shift()

Using Help | Contents | Index Back 115

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 115

Description

The shift() method is the same as pop() except the first element is returned and removed
from the array. As a result, the array length is reduced by 1.

Returns

The value of the deleted array element.

Example

fish = ["shark", "guppy", "red fish", "blue fish"];

trace(fish.shift()); //prints "shark"

i=0;

while (fish[i] != "blue fish")

{

trace(fish[i]);

++i;

}

trace(fish[i]);

//prints

//guppy

//red fish

//blue fish

See also

“Array.push() Method” on page 113, “Array.pop() Method” on page 113, “Array.unshift()
Method” on page 119, “Array.concat() Method” on page 111

Array.slice() Method
arrayObj.slice(start)

arrayObj.slice(start, end)

Description

The slice() method copies a subset of an existing array to create a new array consisting of
just those elements. start and end are indices into the array (zero-based indexing). The
slice begins with start and continues up to, but not including, end. If start or end is a
negative number, the index is equal to the total number of elements in the array minus
the absolute value of the number.

Parameters

start The array index at which to begin the slice. Can also be a negative number.

end (Optional) The array index at which to end the slice. The slice does not include this
element. If this argument is not present, the slice extends all the way to the end
of the array. Can also be a negative number.

Using Help | Contents | Index Back 116

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 116

Returns

A new array that begins with array element start and contains all array elements between
start up to, but not including, array element end of the original array.

Example

function printArray(arrayId)

{

for(i=0; i<arrayId.length; i++)

trace(arrayId[i]);

}

var a = [1,2,3,4,5];

b = a.slice(0,3);

printArray(b);//prints 1,2,3

b = a.slice(3);

printArray(b);//prints 4,5

b = a.slice(1,-1);

printArray(b);//prints 2,3,4

b = a.slice(-3,-2);

printArray(b);//prints 3

See also

“Array.splice() Method” on page 117

Array.sort() Method
arrayObj.sort()

arrayObj.sort(userFunction)

Description

The sort() method sorts the elements of arrayObj in place. If no argument is provided, the
elements are sorted in alphabetical order. To sort the array in any other order, you have to
supply a function that compares two array elements and returns a value indicating how
they should be sorted. For userFunction(a,b), if the return value is:

• less than 0, then b is sorted to a lower index than a;

• 0, then a and b are left unchanged with respect to each other, but are sorted with
respect to all different elements;

• greater than 0, then b is sorted to a higher index than a.

Parameters

userFunction (Optional) A user-supplied function that dictates sort order. If omitted, the array
is sorted lexicographically (in dictionary order) according to the string conver-
sion of each element.

Using Help | Contents | Index Back 117

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 117

Example

fish = new Array("shark", "guppy", "red fish", "blue fish");

fish.sort();

for(i=0; (i != fish.length); ++i)

trace(fish[i]);

//prints

//blue fish

//guppy

//red fish

//shark

function numberOrder(a,b) { return a - b; }

a = new Array(33,4,1111,222);

a.sort();

for (i=0;i<a.length;i++) {

trace(a[i]);

}

a.sort(numberOrder);

for (i=0;i<a.length;i++) {

trace(a[i]);

}

//prints

//1111

//222

//33

//4

//4

//33

//222

//1111

See also

“Array.join() Method” on page 112, “Array.reverse() Method” on page 114

Array.splice() Method
arrayObj.splice(start)

arrayObj.splice(start, num)

arrayObj.splice(start, num, value1, ...valuen)

Using Help | Contents | Index Back 118

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 118

Description

The splice() method removes num elements from an array beginning at start. splice()
optionally inserts new elements starting at zero-based index start. To ensure element
contiguity, splice() moves elements up to fill in any gaps.

Parameters

Returns

An array consisting of any elements that were spliced from the array.

Example

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");

fishAndNumbers.splice(2,2,6,"red fish");

for(i=0; (i != fishAndNumbers.length); ++i)

trace(fishAndNumbers[i]);

//prints

//1

//2

//6

//redfish

//guppy

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");

fishAndNumbers.splice(-3,2,6,"red fish");//negative start index

for(i=0; (i != fishAndNumbers.length); ++i)

trace(fishAndNumbers[i]);

//prints

//1

//2

//6

//red fish

//guppy

start The (zero-based) index of the first array element to remove. If start is a
negative value, start is relative to the end of the array (the index is the
number of elements in the array minus the absolute value of the value).

num (Optional) The number of array elements to remove, including start. If 0,
no elements are removed. If num is omitted, all elements from array index
start to the end of the array are removed.

value1, ...valuen (Optional) Any number of values to be added to the array starting at index
start.

Using Help | Contents | Index Back 119

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 119

See also

“Array.slice() Method” on page 115

Array.toString() Method
arrayObj.toString()

Description

The toString() method converts an array to a string and returns the string. Yields the same
result as the arrayObj.join() method when that method is used without a parameter.

Returns

A comma-separated list of all the elements of the array.

Example

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");

trace(fishAndNumbers.toString());//prints "1,2,shark,3,guppy"

See also

“Array.join() Method” on page 112, “Array.reverse() Method” on page 114, “Array.sort()
Method” on page 116, “Object.toString() Method” on page 200

Array.unshift() Method
arrayObj.unshift(value1, ...valuen)

Description

The unshift() method adds elements to the beginning of the array.

Parameters

Returns

The new array length.

Example

fishAndNumbers = new Array(1,2, "shark", 3, "guppy");

trace(fishAndNumbers.unshift(2,6,"red fish")); //prints return value of 8

for(i=0; (i != fishAndNumbers.length); ++i)

trace(fishAndNumbers[i]);

//prints

//2

//6

//red fish

value1, ...valuen The values of one or more elements to be added to the beginning of the
array, starting at index 0.

Using Help | Contents | Index Back 120

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 120

//1

//2

//shark

//3

//guppy

See also

“Array.push() Method” on page 113, “Array.pop() Method” on page 113, “Array.shift()
Method” on page 114, “Array.concat() Method” on page 111

Boolean() Global Function
Boolean(value)

Description

The Boolean() global function converts its parameter to a primitive boolean value and
returns the value. Do not confuse this global function with the Boolean object.

Parameters

Returns

The primitive boolean value of value (true or false).

Example

var testFalse = 0;

var testTrue = true;

trace(Boolean(0));//prints "false"

trace(Boolean(1));//prints "true"

trace(Boolean(true));//prints "true"

trace(Boolean("true"));//prints "false" - not a valid non-zero number

trace(Boolean(false));//prints "false"

trace(Boolean(testFalse));//prints "false"

trace(Boolean(testTrue));//prints "true"

See also

“Boolean Object” on page 121, “String() Global Function” on page 214, “Number() Global
Function” on page 194

value The value to convert to primitive boolean.

Using Help | Contents | Index Back 121

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 121

Boolean Object
Description

The Boolean object provides support for boolean values. The Boolean() constructor with
the new operator converts its parameter to a boolean value and returns a Boolean object
wrapper containing the value. This allows the object to inherit the methods of the Object
class (see “Object Class” on page 199).

Constructor

new Boolean()

new Boolean(value)

Parameters

Properties

None.

Methods

Boolean.toString() Method
bool.toString()

Description

The toString() method returns the string representation of the value of bool. The method
returns the string true if the primitive value of bool is true; otherwise it returns the string
false.

Example

bool = new Boolean(1);

trace(bool.toString()); // displays "true"

Boolean.valueOf() Method
bool.valueOf()

value (Optional) The value that is converted to a boolean—can be a number, string,
boolean, or object. The values 0, NaN, null, the empty string (""), and undefined
all return false. All other values return true. If this parameter is omitted, the
Boolean object is initialized with a value of false.

toString() See “Boolean.toString()
Method” on page 121.

Convert the value of the Boolean object to a string.

valueOf() See “Boolean.valueOf()
Method” on page 121.

Return the primitive boolean value of the object.

Using Help | Contents | Index Back 122

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 122

Description

The valueOf() method returns the primitive value of bool . The method returns true if the
primitive value of bool is true; otherwise it returns false.

Example

bool = new Boolean("");

trace(bool.valueOf()); //prints "false"

Color Object
Description

The Color object supports access to and control of the color of a movie clip. It allows you to
get and set the red, green, and blue (RGB) color values and transformation information.
You must create an instance of the Color object for a specific target before using any of the
Color methods.

Constructor

new Color(target)

Parameters

Properties

None.

Methods

Color.getRGB() Method
colorObject.getRGB()

target A path or a reference to the movie clip for which the Color object is created.

getRGB() See “Color.getRGB()
Method” on
page 122.

Return the RGB offset values for the object.

getTransform() See
“Color.getTrans-
form() Method” on
page 123.

Return the current offset and percentage values as an
object of type Object. For more information on the
Object class, see “Object Class” on page 199.

setRGB() See “Color.setRGB()
Method” on
page 124.

Set the RGB offset values for the object.

setTransform() See “Color.setTrans-
form Method” on
page 124.

Set the offset and/or percentage values using an object
of type Object. For more information on the type Object,
see “Object Class” on page 199.

Using Help | Contents | Index Back 123

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 123

Description

The getRGB() method returns the RGB color offset values for colorObject as one number.
These are the values that were set by a call to setRGB(). If the offsets have never been set
(via setRGB()) then the default values for the RGB offsets are 0, 0, 0.

Returns

A number indicating the RGB color offsets of colorObject in the form
red<<16|green<<8|blue.

Example

redBaseball = new Color(_root.baseball);

redBaseball.setRGB(0xFF0000);

trace(redBaseball.getRGB());//prints 16711680

See also

“Color.setRGB() Method” on page 124.

Color.getTransform() Method
colorObject.getTransform()

Description

The getTransform() method returns an object of type Object whose properties are the
transformation values of colorObject.

The properties are the following:

• ra is the red transformation percentage (-100 to 100)

• rb is the red offset (-255 to 255)

• ga is the green transformation percentage (-100 to 100)

• gb is the green offset (-255 to 255)

• ba is the blue transformation percentage (-100 to 100)

• bb is the blue offset (-255 to 255)

• aa is the alpha transformation percentage (-100 to 100)

• ab is the alpha offset (-255 to 255)

The final value for each color is computed as: value = original * (transformation
percentage) + offset.

Returns

An object of type Object whose properties contain the transformation values of the movie
clip colorObject.

Example

redFish= new Color(_root.fish);

fishChanger = new Object();

fishChanger.ra = 100;//Red percentage

fishChanger.rb = 200;//Red offset

Using Help | Contents | Index Back 124

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 124

fishChanger.ga = 0;//Green percentage

fishChanger.gb = 0;//Green offset

fishChanger.ba = 100;//Blue percentage

fishChanger.bb = 50;//Blue offset

fishChanger.aa = 40;//Alpha percentage

fishChanger.ab = -10;//Alpha offset

redFish.setTransform(fishChanger);

fishChanger = redFish.getTransform();

fishChanger.rb = 300;//set the Red offset

fishChanger.ga = 20;//set the Green transformation percentage

redFish.setTransform(fishChanger);//changes the transformation values

See also

“Color.setTransform Method” on page 124, “Object Class” on page 199

Color.setRGB() Method
colorObject.setRGB(offsetValue)

Description

The setRGB() method sets the RGB color offsets for colorObject. It also sets all the transfor-
mation percentages to 0, which results in the ignoring of the movie clip’s original color and
the setting of its color to the values of the offsets. The following are suggestions for
creating offsetValue:

• offsetValue = red<<16|green<<8|blue where red, green, and blue are values from 0 to 255;

• offsetValue = 0xRRGGBB, where RR, GG, and BB are hexadecimal values for each color and
are in the range from 00 to FF.

Parameters

Example

redBaseball = new Color("_root.baseball");

redBaseball.setRGB(0xFF0000);

trace(redBaseball.getRGB());//prints 16711680

See also

“Color.getRGB() Method” on page 122

Color.setTransform Method
colorObject.setTransform(transformObj)

offsetValue An integer in the range of 0 to 16777215 (0xFFFFFF), can be a hexadecimal num-
ber (0x) indicating the offsets for each of the color offset values.

Using Help | Contents | Index Back 125

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 125

Description

The setTransform() method sets the color transform information for colorObject. To use
setTransform(), you first must create an object of type Object (for more information on the
type Object, see “Object Class” on page 199) with a series of properties, and pass the
object as the parameter to setTransform(). setTransform() uses the values as the new
offsets and percentages of colorObject. The properties are the following:

• ra is the red transformation percentage (-100 to 100)

• rb is the red offset (-255 to 255)

• ga is the green transformation percentage (-100 to 100)

• gb is the green offset (-255 to 255)

• ba is the blue transformation percentage (-100 to 100)

• bb is the blue offset (-255 to 255)

• aa is the alpha transformation percentage (-100 to 100)

• ab is the alpha offset (-255 to 255)

The final value for each color is computed as: value = original * (transformation
percentage) + offset.

Parameters

Example

redFish= new Color(_root.fish);

fishChanger = new Object();

fishChanger.ra = 100;//Red percentage

fishChanger.rb = 200;//Red offset

fishChanger.ga = 0;//Green percentage

fishChanger.gb = 0;//Green offset

fishChanger.ba = 100;//Blue percentage

fishChanger.bb = 50;//Blue offset

fishChanger.aa = 40;//Alpha percentage

fishChanger.ab = -10;//Alpha offset

redFish.setTransform(fishChanger);//sets the new transformation
values

See also

“Color.getTransform() Method” on page 123

Date() Global Function
Date()

transformObj An object created using the constructor of the generic Object class whose prop-
erties specify color transformation percentages and color offsets.

Using Help | Contents | Index Back 126

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 126

Description

The Date() global function returns a string containing the current date, the current time in
the local time zone, and the offset in hours between Coordinated Universal Time (UTC—
formerly called the Greenwich Mean Time, or GMT) and the local time. Do not confuse this
global function with the Date object.

For example:

Mon Sep 10, 16:30:29 GMT-0700 2001

Example

var now = Date();

trace(now);//prints string

Date Object
Description

The Date object allows you to get and set the local date and time or the Coordinated
Universal Time (UTC—formerly called the Greenwich Mean Time, or GMT). To call the Date
object’s methods, you must create a new object using the constructor.

System-supplied dates and times are based on (and are as accurate as) the clock settings
of the operating system upon which the Flash Player is running.

Constructor

new Date()

new Date(ms)

new Date(year, month, date, hour, min, sec, ms)

Description

You can create a Date object in three ways:

• With no arguments. This creates a new Date object holding the current date and time
based on the local system clock. For example:

var now = new Date();

trace(now.getDate());//prints the day of the month

• With one argument representing milliseconds. This creates a Date object holding the
number of milliseconds relative to midnight January 1, 1970. For example:

var now = new Date(999901885456);

trace(now.getTime());//prints 999901885456

• With three or more arguments. This creates a Date object indicating the year (required),
month (required), day (required), hour, minute, second, and millisecond. To use an
optional argument, all the arguments previous to it in the function call must be
present.

var now = new Date(99, 11, 31, 9, 52, 54, 999);

trace(now.getFullYear());//prints 1999

Using Help | Contents | Index Back 127

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 127

trace(now.getMonth());//prints 11

trace(now.getDate());//prints 31

trace(now.getHours());//prints 9

trace(now.getMinutes());//prints 52

trace(now.getSeconds());//prints 54

trace(now.getMilliseconds());//prints 999

Parameters

Properties

None.

Methods

ms (Optional) An integer value representing the number of milliseconds since 1
January 1970 00:00:00.

year The year expressed in four digits—for example, 2001. Alternatively, if you need
to indicate a year from 1900 to 1999, specify a value from 0 to 99.

month An integer value from 0 (Jan.) to 11 (Dec.).

date An integer value from 1 to 31. If this argument is not supplied, its value is set to
0.

hour (Optional) An integer value from 0 (midnight) to 23 (11 PM). If this argument is
not supplied, its value is set to 0.

min (Optional) An integer value from 0 to 59. If this argument is not supplied, its
value is set to 0.

sec (Optional) An integer value from 0 to 59. If this argument is not supplied, its
value is set to 0.

ms (Optional) An integer value from 0 to 999. If this argument in not supplied, its
value is set to 0.

getDate() See “Date.getDate() Method”
on page 129.

Return the day of the month.

getDay() See “Date.getDay() Method” on
page 130.

Return the day of the week.

getFullYear() See “Date.getFullYear()
Method” on page 130.

Return the year expressed in four-
digit format.

getHours() See “Date.getHours() Method”
on page 130.

Return the hour.

getMilliseconds() See “Date.getMilliseconds()
Method” on page 131.

Return the milliseconds.

getMinutes() See “Date.getMinutes()
Method” on page 131.

Return the minutes.

Using Help | Contents | Index Back 128

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 128

getMonth() See “Date.getMonth() Method”
on page 131.

Return the month.

getSeconds() See “Date.getSeconds()
Method” on page 132.

Return the seconds.

getTime() See “Date.getTime() Method”
on page 132.

Return the number of milliseconds
that have passed since January 1,
1970.

getTimezoneOffset() See “Date.getTimezoneOff-
set() Method” on page 132.

Return the number of minutes
between UTC and local time.

getUTCDate() See “Date.getUTCDate()
Method” on page 133.

Return the day of the month in UTC.

getUTCDay() See “Date.getUTCDay()
Method” on page 133.

Return the day of the week in UTC.

getUTCFullYear() See “Date.getUTCFullYear()
Method” on page 134.

Return the year as four-digits in UTC.

getUTCHours() See “Date.getUTCHours()
Method” on page 134.

Return the hour in UTC.

getUTCMilliseconds() See “Date.getUTCMillisec-
onds() Method” on page 134.

Return the milliseconds in UTC.

getUTCMinutes() See “Date.getUTCMinutes()
Method” on page 135.

Return the minutes in UTC.

getUTCMonth() See “Date.getUTCMonth()
Method” on page 135.

Return the month in UTC.

getUTCSeconds() See “Date.getUTCSeconds()
Method” on page 135.

Return the seconds in UTC.

getYear() See “Date.getYear() Method”
on page 136.

Return the year relative to 1900.

setDate() See “Date.setDate() Method”
on page 136.

Set the day of the month.

setFullYear() See “Date.setFullYear()
Method” on page 137.

Set the year in four-digit format.

setHours() See “Date.setHours() Method”
on page 137.

Set the hour of the day.

setMilliseconds() See “Date.setMilliseconds()
Method” on page 138.

Set the milliseconds.

setMinutes() See “Date.setMinutes()
Method” on page 138.

Set the minutes.

setMonth() See “Date.setMonth() Method”
on page 139.

Set the month.

setSeconds() See “Date.setSeconds()
Method” on page 139.

Set the seconds.

Using Help | Contents | Index Back 129

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 129

Date.getDate() Method
dateObj.getDate()

Description

The getDate() method returns the day of the month.

Returns

An integer value from 1 to 31.

Example

var now = new Date();

trace(now.getDate());//prints the day of the month

setTime() See “Date.setTime() Method”
on page 140.

Set the date in number of millisec-
onds that have passed since January
1, 1970.

setUTCDate() See “Date.setUTCDate()
Method” on page 140.

Set the day of the month in UTC.

setUTCFullYear() See “Date.setUTCFullYear()
Method” on page 141.

Set the year in four-digit format in
UTC.

setUTCHours() See “Date.setUTCHours()
Method” on page 141.

Set the hour in UTC.

setUTCMilliseconds() See “Date.setUTCMilliseconds()
Method” on page 142.

Set the milliseconds in UTC.

setUTCMinutes() See “Date.setUTCMinutes()
Method” on page 142.

Set the minutes in UTC.

setUTCMonth() See “Date.setUTCMonth()
Method” on page 143.

Set the month in UTC.

setUTCSeconds() See “Date.setUTCSeconds()
Method” on page 143.

Set the seconds in UTC.

setYear() See “Date.setYear() Method” on
page 144.

Set the year in four-digit format.

toString() See “Date.toString() Method”
on page 145.

Return the date and time values as a
string.

UTC() See “Date.UTC() Method” on
page 145.

Return the number of milliseconds
between January 1, 1970 in UTC and
the time specified.

valueOf() See “Date.valueOf() Method”
on page 146.

Return the number of milliseconds
that have passed since midnight, Jan-
uary 1, 1970 UTC. Equivalent to get-
Time().

Using Help | Contents | Index Back 130

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 130

See also

“Date.getUTCDate() Method” on page 133, “Date.setDate() Method” on page 136

Date.getDay() Method
dateObj.getDay()

Description

The getDay() method returns the day of the week.

Returns

An integer value from 0 (Sunday) to 6 (Saturday).

Example

var now = new Date();

trace(now.getDay());//prints the day of the week as an integer

See also

“Date.getUTCDay() Method” on page 133

Date.getFullYear() Method
dateObj.getFullYear()

Description

The getFullYear() method returns the year expressed in four-digit format.

Returns

The year expressed in four digits—for example, 2001.

var now = new Date();

trace(now.getFullYear());//prints the year in four digits

See also

“Date.getYear() Method” on page 136, “Date.getUTCFullYear() Method” on page 134,
“Date.setFullYear() Method” on page 137

Date.getHours() Method
dateObj.getHours()

Description

The getHours() method returns the hour of the day.

Returns

An integer value in the range of 0 (midnight) to 23 (11 PM).

Example

var now = new Date();

Using Help | Contents | Index Back 131

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 131

trace(now.getHours());//prints the hour

See also

“Date.getUTCHours() Method” on page 134, “Date.setHours() Method” on page 137

Date.getMilliseconds() Method
dateObj.getMilliseconds()

Description

The getMilliseconds() method returns the milliseconds.

Returns

An integer value from 0 to 999.

var now = new Date();

trace(now.getMilliseconds());//prints the milliseconds

See also

“Date.getUTCMilliseconds() Method” on page 134, “Date.setMilliseconds() Method” on
page 138

Date.getMinutes() Method
dateObj.getMinutes()

Description

The getMinutes() method returns the minutes.

Returns

An integer value in the range 0 to 59.

Example

var now = new Date();

trace(now.getMinutes());//prints the minutes

See also

“Date.getUTCMinutes() Method” on page 135, “Date.setMinutes() Method” on page 138

Date.getMonth() Method
dateObj.getMonth()

Description

The getMonth() method returns the month.

Returns

An integer value from 0 (Jan.) to 11 (Dec.).

Using Help | Contents | Index Back 132

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 132

Example

var now = new Date();

trace(now.getMonth());//prints the month as an integer

See also

“Date.getUTCMonth() Method” on page 135, “Date.setMonth() Method” on page 139

Date.getSeconds() Method
dateObj.getSeconds()

Description

The getSeconds() method returns the seconds.

Returns

An integer value in the range of 0 to 59.

Example

var now = new Date();

trace(now.getSeconds());//prints the seconds

See also

“Date.getUTCSeconds() Method” on page 135, “Date.setSeconds() Method” on page 139

Date.getTime() Method
dateObj.getTime()

Description

The getTime() method returns the number of milliseconds that have passed since
January 1, 1970.

Returns

An integer value representing milliseconds.

Example

var now = new Date();

trace(now.getTime());//prints a very large integer

See also

“Date.setTime() Method” on page 140, “Date.setMilliseconds() Method” on page 138

Date.getTimezoneOffset() Method
dateObj.getTimezoneOffset()

Using Help | Contents | Index Back 133

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 133

Description

The getTimezoneOffset() method returns the number of minutes between UTC and local
time. Accounts for daylight savings time.

Returns

An integer value representing the number of minutes.

Example

var now = new Date();

trace(now.getTimezoneOffset());

// for California, prints 420 (7 hours) if daylight savings;

// if not daylight savings, prints 480

Date.getUTCDate() Method
dateObj.getUTCDate()

Description

The getUTCDate() method returns the day of the month in UTC.

Returns

An integer value from 1 to 31.

Example

var now = new Date();

trace(now.getUTCDate());//prints the day of the month

See also

“Date.getDate() Method” on page 129, “Date.setUTCDate() Method” on page 140

Date.getUTCDay() Method
dateObj.getUTCDay()

Description

The getUTCDay() method returns the day of the week in UTC.

Returns

An integer value from 0 (Sunday) to 6 (Saturday).

Example

var now = new Date();

trace(now.getUTCDay());//prints the day of the week as an integer

See also

“Date.getDay() Method” on page 130

Using Help | Contents | Index Back 134

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 134

Date.getUTCFullYear() Method
dateObj.getUTCFullYear()

Description

The getUTCFullYear() method returns the year as four-digits in UTC.

Returns

The year expressed in four digits—for example, 2001.

Example

var now = new Date();

trace(now.getUTCFullYear());//prints the year in four digits

See also

“Date.getFullYear() Method” on page 130, “Date.setUTCFullYear() Method” on page 141

Date.getUTCHours() Method
dateObj.getUTCHours()

Description

The getUTCHours() method returns the hour in UTC.

Returns

An integer value in the range of 0 (midnight) to 23 (11 PM).

Example

var now = new Date();

trace(now.getUTCHours());//prints the hour

See also

“Date.getHours() Method” on page 130, “Date.setUTCHours() Method” on page 141

Date.getUTCMilliseconds() Method
dateObj.getUTCMilliseconds()

Description

The getUTCMilliseconds() method returns the milliseconds in UTC.

Returns

An integer value from 0 to 999.

Example

var now = new Date();

trace(now.getUTCMilliseconds());//prints the milliseconds

Using Help | Contents | Index Back 135

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 135

See also

“Date.getMilliseconds() Method” on page 131, “Date.setUTCMilliseconds() Method” on
page 142

Date.getUTCMinutes() Method
dateObj.getUTCMinutes()

Description

The getUTCMinutes() method returns the minutes in UTC.

Return

An integer value in the range of 0 to 59.

Example

var now = new Date();

trace(now.getUTCMinutes());//prints the minutes

See also

“Date.getMinutes() Method” on page 131, “Date.setUTCMinutes() Method” on page 142

Date.getUTCMonth() Method
dateObj.getUTCMonth()

Description

The getUTCMonth() method returns the month in UTC.

Returns

An integer value from 0 (Jan.) to 11 (Dec.).

Example

var now = new Date();

trace(now.getUTCMonth());//prints the month as an integer

See also

“Date.getMonth() Method” on page 131, “Date.setUTCMonth() Method” on page 143

Date.getUTCSeconds() Method
dateObj.getUTCSeconds()

Description

The getUTCSeconds() method returns the seconds in UTC.

Returns

An integer value in the range of 0 to 59.

Using Help | Contents | Index Back 136

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 136

Example

var now = new Date();

trace(now.getUTCSeconds());//prints the seconds

See also

“Date.getSeconds() Method” on page 132, “Date.setUTCSeconds() Method” on page 143

Date.getYear() Method
dateObj.getYear()

Description

The getYear() method returns the year relative to 1900. For example, 101 is returned for
the year 2001.

Returns

An integer value representing the number of years that have passed since 1900.

Example

var now = new Date();

trace(now.getYear());//prints current year minus 1900

See also

“Date.getFullYear() Method” on page 130, “Date.getUTCFullYear() Method” on page 134,
“Date.setYear() Method” on page 144

Date.setDate() Method
dateObj.setDate(date)

Description

The setDate() method sets the day of the month of dateObj. This does not affect the
system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

trace(now.setDate(6));//prints a very large integer

trace(now.getDate());//prints 6

date An integer value from 1 to 31 indicating the day of the month to set.

Using Help | Contents | Index Back 137

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 137

See also

“Date.getDate() Method” on page 129, “Date.setUTCDate() Method” on page 140

Date.setFullYear() Method
dateObj.setFullYear(year, month, date)

Description

The setFullYear() method sets the year of dateObj. The method also sets month and date
when these optional parameters are specified. This does not affect the system clock or
anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

trace(now.setFullYear(2001));//prints a very large integer

trace(now.getFullYear());//prints 2001

trace(now.getMonth());//prints month

trace(now.getDate());//prints day of the month

See also

“Date.setUTCFullYear() Method” on page 141, “Date.setYear() Method” on page 144,
“Date.getFullYear() Method” on page 130

Date.setHours() Method
dateObj.setHours(hour)

Description

The setHours() method sets the hour of dateObj. This does not affect the system clock or
anything else.

Parameters

year A four-digit integer value indicating the year to set—for example, 2001.

month (Optional) An integer value from 0 (Jan.) to 11 (Dec.) indicating the month of the
year to set.

date (Optional) An integer value from 1 to 31 indicating the day of the month to set.

hour An integer value from 0 (midnight) to 23 (11 PM) indicating the hour of the day
to set.

Using Help | Contents | Index Back 138

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 138

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

trace(now.setHours(22));//prints a very large integer

trace(now.getHours());//prints 22

See also

“Date.getHours() Method” on page 130, “Date.setUTCHours() Method” on page 141

Date.setMilliseconds() Method
dateObj.setMilliseconds(ms)

Description

The setMilliseconds() method sets the milliseconds of dateObj. This does not affect the
system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

trace(now.setMilliseconds(847));//prints a very large integer

trace(now.getMilliseconds());//prints 847

See also

“Date.getMilliseconds() Method” on page 131, “Date.setUTCMilliseconds() Method” on
page 142

Date.setMinutes() Method
dateObj.setMinutes(min)

Description

The setMinutes() method sets the minutes of dateObj. This does not affect the system clock
or anything else.

Parameters

ms An integer value from 0 to 999 indicating the milliseconds to set.

min An integer value from 0 to 59 indicating the number of minutes to set.

Using Help | Contents | Index Back 139

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 139

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

trace(now.setMinutes(59));//prints a very large integer

trace(now.getMinutes());//prints 59

See also

“Date.getMinutes() Method” on page 131, “Date.setUTCMinutes() Method” on page 142

Date.setMonth() Method
dateObj.setMonth(month)

Description

The setMonth() method sets the month of dateObj. This does not affect the system clock or
anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

trace(now.setMonth(0));//prints a very large integer

trace(now.getMonth());//prints 0

See also

“Date.getMonth() Method” on page 131, “Date.setUTCMonth() Method” on page 143

Date.setSeconds() Method
dateObj.setSeconds(sec)

Description

The setSeconds() method sets the seconds of dateObj. This does not affect the system clock
or anything else.

Parameters

month An integer value from 0 (Jan.) to 11 (Dec.) indicating the month to set.

sec An integer value from 0 to 59 indicating the seconds to set.

Using Help | Contents | Index Back 140

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 140

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

trace(now.setSeconds(59));//prints a very large integer

trace(now.getSeconds());//prints 59

See also

“Date.getSeconds() Method” on page 132, “Date.setUTCSeconds() Method” on page 143

Date.setTime() Method
dateObj.setTime(ms)

Description

The setTime() method sets the date in number of milliseconds that have passed since
January 1, 1970. This does not affect the system clock or anything else.

Parameters

Returns

The number of milliseconds set.

Example

var now = new Date();

trace(now.setTime(999930239559));//prints a very large integer

trace(now.getTime());//prints 999930239559

See also

“Date.getTime() Method” on page 132

Date.setUTCDate() Method
dateObj.setUTCDate(date)

Description

The setUTCDate() method sets the date of the month in UTC of dateObj. This does not affect
the system clock or anything else.

Parameters

ms An integer value indicating the number of milliseconds between the date to
be set and midnight, January 1, 1970.

date An integer value from 1 to 31 indicating the day to be set.

Using Help | Contents | Index Back 141

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 141

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();

trace(now.setUTCDate(2));//prints a very large integer

trace(now.getUTCDate());//prints 2

See also

“Date.getUTCDate() Method” on page 133, “Date.setDate() Method” on page 136

Date.setUTCFullYear() Method
dateObj.setUTCFullYear(year, month, date)

Description

The setUTCFullYear() method sets the year in UTC of dateObj, and optionally sets the
month and day of the month. This does not affect the system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();

trace(now.setUTCFullYear(2001,3,1));//prints a very large integer

trace(now.getUTCFullYear());//prints 2001

trace(now.getUTCMonth());//prints 3

trace(now.getUTCDate());//prints 1

See also

“Date.getUTCFullYear() Method” on page 134, “Date.setFullYear() Method” on page 137

Date.setUTCHours() Method
dateObj.setUTCHours(hour)

Description

The setUTCHours() method sets the hour of the day in UTC of dateObj. This does not affect
the system clock or anything else.

year The year expressed in four digits—for example, 2001.

month (Optional) An integer from 0 (Jan.) to 11 (Dec.).

date (Optional) An integer value from 1 to 31.

Using Help | Contents | Index Back 142

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 142

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();

trace(now.setUTCHours(22));//prints a very large integer

trace(now.getUTCHours());//prints 22

See also

“Date.getUTCHours() Method” on page 134, “Date.setHours() Method” on page 137

Date.setUTCMilliseconds() Method
dateObj.setUTCMilliseconds(ms)

Description

The setUTCMilliseconds() method sets the milliseconds in UTC of dateObj. This does not
affect the system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();

trace(now.setUTCMilliseconds(220));//prints a very large integer

trace(now.getUTCMilliseconds());//prints 220

See also

“Date.getUTCMilliseconds() Method” on page 134, “Date.setMilliseconds() Method” on
page 138

Date.setUTCMinutes() Method
dateObj.setUTCMinutes(min)

hour An integer value from 0 (midnight) to 23 (11 PM) indicating the hour to be set.

ms An integer value in the range of 0 to 999 indicating the number of milliseconds
to set.

Using Help | Contents | Index Back 143

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 143

Description

The setUTCMinutes() method sets the minutes in UTC of dateObj. This does not affect the
system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();

trace(now.setUTCMinutes(45));//prints a very large integer

trace(now.getUTCMinutes());//prints 45

See also

“Date.getUTCMinutes() Method” on page 135, “Date.setMinutes() Method” on page 138

Date.setUTCMonth() Method
dateObj.setUTCMonth(month)

Description

The setUTCMonth() method sets the month in UTC of dateObj. This does not affect the
system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();

trace(now.setUTCMonth(11));//prints a very large integer

trace(now.getUTCMonth());//prints 11

See also

“Date.getUTCMonth() Method” on page 135, “Date.setMonth() Method” on page 139

Date.setUTCSeconds() Method
dateObj.setUTCSeconds(sec)

min An integer value in the range 0 to 59 indicating the number of minutes to be set.

month An integer value in the range 0 (Jan.) to 11 (Dec.) indicating the month to set.

Using Help | Contents | Index Back 144

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 144

Description

The setUTCSeconds() sets the seconds in UTC of dateObj. This does not affect the system
clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date();

trace(now.setUTCSeconds(44));//prints a very large integer

trace(now.getUTCSeconds());//prints 44

See also

“Date.getUTCSeconds() Method” on page 135, “Date.setSeconds() Method” on page 139

Date.setYear() Method
dateObj.setYear(year, month, date)

Description

The setYear() method sets the year of dateObj, and optionally the month and day of the
month. This does not affect the system clock or anything else.

Parameters

Returns

The number of milliseconds between the date set and midnight, January 1, 1970.

Example

var now = new Date();

trace(now.setYear(2001,3,1));//prints a very large integer

trace(now.getFullYear());//prints 2001

trace(now.getMonth());//prints 3

trace(now.getDate());//prints 1

sec An integer value in the range 0 to 59 indicating the number of seconds to set.

year An integer value indicating the year to set. The method interprets a 1- or
2-digit value to mean the 1900s—for example, 13 is interpreted to mean 1913.

month (Optional) An integer value in the range of 0 (Jan.) to 11 (Dec.) indicating the
month to set.

date (Optional) An integer value in the range of 1 to 31 indicating the day to be set.

Using Help | Contents | Index Back 145

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 145

See also

“Date.getYear() Method” on page 136, “Date.setFullYear() Method” on page 137,
“Date.setUTCFullYear() Method” on page 141

Date.toString() Method
dateObj.toString()

Description

The toString() method returns the date and time values as a string.

Returns

The following string is an example of the format returned by this method:

Mon Aug 13, 10:54:21 GMT-0700 2001

Example

var now = new Date();

trace(now.toString());//string with the date

Date.UTC() Method
Date.UTC(year, month, date, hour, min, sec, ms)

Description

The Date.UTC() method returns the date as the number of milliseconds between the time
specified (passed in as the arguments to the method) and midnight, January 1, 1970, in
UTC. The first three parameters are required. Date.UTC() and Date() accept the same
arguments; the only difference between the two is that the new Date object created using
Date.UTC() assumes UTC while the new Date object created using only Date() assumes
local time. A new UTC date object is normally created like this:

now = new Date(Date.UTC(2001, 9, 30));

In addition, Date.UTC() is commonly used with the setTime() method to set a UTC date.

Parameters

year The year expressed in four digits— for example, 2001. To indicate for a year from
1900 to 1999, you can specify a value from 0 to 99.

month An integer value from 0 (Jan.) to 11 (Dec.).

date An integer value from 1 to 31.

hour (Optional) An integer value in the range of 0 (midnight) to 23 (11 PM).

min (Optional) An integer value in the range of 0 to 59.

sec (Optional) An integer value in the range of 0 to 59.

ms (Optional) An integer value in the range of 0 to 999.

Using Help | Contents | Index Back 146

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 146

Returns

The number of milliseconds between the date set and midnight, January 1, 1970, in UTC.

Example

var now = new Date(Date.UTC(96, 11, 29, 11, 58, 59, 345));

trace(now.getTime());//prints milliseconds

trace(now.getUTCFullYear());//prints 1996

trace(now.getMonth());//prints 11

trace(now.getUTCDate());//prints 29

trace(now.getUTCHours());//prints 11

trace(now.getUTCMinutes());//prints 58

trace(now.getUTCSeconds());//prints 59

trace(now.getUTCMilliseconds());//prints 345

See also

“Date.setTime() Method” on page 140

Date.valueOf() Method
dateObj.valueOf()

Description

The valueOf() method returns the number of milliseconds that have passed since
midnight, January 1, 1970 UTC. Equivalent to getTime().

Returns

An integer value representing milliseconds.

Example

var now = new Date();

trace(now.valueOf());//prints the number of milliseconds

See also

“Date.getTime() Method” on page 132

duplicateMovieClip() Global Function
duplicateMovieClip(target, newName, depth)

Description

The duplicateMovieClip() global function creates a duplicate of target while target is
playing. The duplicate movie clip always starts at its frame 1 regardless of target’s frame at
the time of duplication. The duplicate movie clip inherits shape transformations but not
the current values of target’s user-defined variables. The duplicate movie clip is placed in
target’s parent’s programmatic stack. A programmatic stack holds child movie clips; when
you duplicate a movie clip, the duplicate has the same parent as the original, and thus
resides in the parent’s programmatic stack.

Using Help | Contents | Index Back 147

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 147

The removeMovieClip() global function is used to delete duplicate movie clips.
movieClip.removeMovieClip() can also be used by duplicate movie clips to delete
themselves. Duplicate movie clips can also be removed by placing another movie clip at
the same depth in the programmatic stack.

Parameters

Example

duplicateMovieClip (_root.baseball, "newBaseball", 1);//creates new
baseball

_root.newBaseball._x += 25;//moves new baseball along x axis

_root.newBaseball._y += 25;//moves new baseball along y axis

See also

“removeMovieClip() Global Function” on page 204, “MovieClip.duplicateMovieClip()
Method” on page 179, “MovieClip.removeMovieClip() Method” on page 188

escape() Global Function
escape(string)

Description

The escape() global function creates an encoded string from string. In the new string,
characters of string that require encoding are replaced with the format %xx, where xx is the
hexadecimal value of the character. The encoding is basically URL encoding, except that
spaces are replaced with %20 instead of a + sign. Use the unescape() global function to
translate the string back into its original format.

Parameters

Example

//prints Billy%20went%20fishing%21%24%23%21

trace(escape("Billy went fishing!$#!"));

See also

“unescape() Global Function” on page 225

target A path or reference to the movie clip that is duplicated.

newName A string specifying the name of the duplicate movie clip. This must be a unique
name.

depth The depth of the movie clip in target’s parent’s programmatic stack.

string The string to be encoded.

Using Help | Contents | Index Back 148

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 148

eval() Global Function
eval(expression)

Description

The eval() global function returns the value of, or a reference to, expression.

Note: This implementation of eval() is different from the traditional JavaScript imple-
mentation.

Parameters

Returns

If expression is a variable or property, the value of the variable or property is returned. If
expression is an object, movie clip, or function, a reference to the item is returned.

Example

x=4;

trace(eval(x));//prints 4

str = "baseball";

hitBaseball = eval("_root."+ str);

hitBaseball._x += 50;//moves movie clip 50 pixels along x axis

trace(eval(this._x));//returns _x property for "this" reference

_focusrect Global Property
_focusrect

Description

The _focusrect global property is a boolean value that specifies whether a button with the
over state defined and that currently has keyboard focus is displayed with a yellow border.
Keyboard focus is obtained using the Tab key. As a boolean, it can be assigned only one of
two values: true or false. If assigned true, the yellow border appears; if false, it does not.
The default value is true. This property can be read or written.

fscommand() Global Function
getURL("fscommand:command", argument)

Description

The fscommand global function is used only within the context of getURL(). See getURL() for
details. In LiveMotion, fscommand communication is only supported for use with the
standalone Flash Player.

expression An expression that evaluates to a variable, property, object, movie clip, or
function.

Using Help | Contents | Index Back 149

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 149

Parameters

See also

“getURL() Global Function” on page 149

getTimer() Global Function
getTimer()

Description

The getTimer() global function gets the number of milliseconds that have elapsed since
the SWF started playing.

Returns

The elapsed time in milliseconds.

getURL() Global Function
getURL(url)

getURL(url, window)

getURL(url, window, howToSendVariables)

Description

The getURL() global function gets a document from a specified URL and loads it into the
Web browser in the specified window. It is also used to execute a script on a server and
receive the results in a Web browser window or frame. Additionally, it can be used to
execute JavaScript code ("javascript:command") or VBScript code ("vbscript:command")in a
Web browser, and it provides support for the fscommand global function. The file, ftp, http,
and print protocols are supported.

Note: This method is not supported in Preview mode.

Parameters

command The command to execute.

argument The argument for the command.

url A string specifying the URL to which to hyperlink (HTTP or FTP).
This may be a relative or an absolute pathname. It can be the name
of a document or it can be a script, and the fscommand global func-
tion can be used here.

Using Help | Contents | Index Back 150

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 150

The fscommand options are as follows:

• getURL("fscommand: allowscale", value)—Tells the standalone Flash Player whether its
contents should scale with the size of the player’s window. value is the string true or
false, indicating whether or not (respectively) the contents of the Flash Player should
scale.

• getURL("fscommand: exec", applicationName)—Tells the standalone Flash Player to
launch an external application. applicationName is a string showing an absolute path to
the application.

• getURL("fscommand: fullscreen", value)—Tells the standalone Flash Player whether to
maximize, filling the entire screen. value is the string true or false, indicating whether
or not (respectively) to maximize.

• getURL("fscommand: quit")—Tells the standalone Flash Player to quit.

• getURL("fscommand: showmenu", value)—Tells the standalone Flash Player whether to
suppress the display of the controls in the context menu. value is the string true or
false, indicating whether or not (respectively) to suppress.

• getURL("fscommand: trapallkeys", value)—Tells the standalone Flash Player whether to
send all keystrokes to the SWF file(s) executing in the Flash Player. value is the string
true or false, indicating whether or not (respectively) to send.

Example

getURL("ftp://download.intel.com");

getURL("http://www.adobe.com", "_parent");

getURL("file:///C|/coolestFile.html");

getURL("javascript: alert(\"Hi\");");

See also

“loadVariables() Global Function” on page 163, “MovieClip.getURL() Method” on page 182,
“MovieClip.loadVariables() Method” on page 186, “fscommand() Global Function” on
page 148

getVersion() Global Function
getVersion()

window (Optional) The target frame in the browser—e.g., _self (the default),
_parent, _top, _blank. If omitted, _self is used. Custom names can
also be used.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables.
This parameter is a string literal. Specify GET to send variables via get
(i.e., tacked onto the end of the URL) or POST to send them with post
(i.e., put into the body of the request). Both methods send them in
application/x-www-form-urlencoded MIME format. All user-defined
variables are sent.

Using Help | Contents | Index Back 151

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 151

Description

The getVersion() global function returns, in string form, the version of the Flash Player that
the user currently has installed. The first number refers to the major version number of the
Flash Player; the second number gives the minor version; the third number is the build
(revision); and the fourth number is the patch.

For example, from LiveMotion’s Preview mode:

LM 5,0,42,0

For example, from an exported SWF file (on a Windows machine):

WIN 5,0,30,0

Returns

The version of the Flash Player installed on the user’s system.

gotoAndPlay() Global Function
gotoAndPlay(label)

Description

The gotoAndPlay() global function sends the current timeline’s playhead to the specified
label and continues playing from label.

Note: Frame numbers should not be passed to this global function. The use of labels is
recommended.

Parameters

See also

“gotoAndStop() Global Function” on page 151, “MovieClip.gotoAndPlay() Method” on
page 183

gotoAndStop() Global Function
gotoAndStop(label)

Description

The gotoAndStop() global function sends the current timeline’s playhead to the specified
label and stops playing.

Note: Frame numbers should not be passed to this global function. The use of labels is
recommended.

Parameters

label A string indicating the destination of the playhead.

label A string indicating the destination of the playhead.

Using Help | Contents | Index Back 152

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 152

See also

“gotoAndPlay() Global Function” on page 151, “MovieClip.gotoAndStop() Method” on
page 183

Infinity Global Property
Infinity

Description

The Infinity global property is a predefined variable with the value for infinity. It is any
value larger than Number.MAX_VALUE, which is the largest number that can be represented in
JavaScript. This property can only be read.

See also

“-Infinity Global Property” on page 152, “Number.POSITIVE_INFINITY Property” on
page 198, “Number.MAX_VALUE Property” on page 196

-Infinity Global Property
-Infinity

Description

The -Infinity global property is a predefined variable with the value of -infinity. This
property can only be read.

See also

“Infinity Global Property” on page 152, “Number.NEGATIVE_INFINITY Property” on
page 197

isFinite Global Function
isFinite(expression)

Description

The isFinite() global function evaluates an expression and returns true if the expression
is a finite number. Otherwise, it returns false—the value is infinity or negative infinity.

Parameters

Returns

true if the expression is a finite number, false otherwise.

See also

“Infinity Global Property” on page 152, “-Infinity Global Property” on page 152

expression Any valid JavaScript expression.

Using Help | Contents | Index Back 153

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 153

IsNan() Global Function
isNan(expression)

Description

The isNan() global function returns true if the expression is Not-a-Number (NaN).

Parameters

Returns

true if the expression is not a number (NaN), false otherwise.

See also

“Number.NaN Property” on page 197

Key Object
Description

The Key object is used to retrieve the state of the keyboard. The Key object and its
constants and methods are static—you do not create Key objects using a constructor.

Constants

expression Any valid JavaScript expression.

BACKSPACE See “Key.BACKSPACE
Constant” on page 154.

Key.BACKSPACE constant represents the key code for the
BACKSPACE key.

CAPSLOCK See “Key.CAPSLOCK
Constant” on page 155.

Key.CAPSLOCK constant represents the key code for the
CAPSLOCK key.

CONTROL See “Key.CONTROL
Constant” on page 155.

Key.CONTROL constant represents the key code for the CON-
TROL key.

DELETEKEY See “Key.DELETEKEY
Constant” on page 155.

Key.DELETEKEY constant represents the key code for the
DELETEKEY key.

DOWN See “Key.DOWN Con-
stant” on page 155.

Key.DOWN constant represents the key code for the DOWN key.

END See “Key.END Constant”
on page 156.

Key.END constant represents the key code for the END key.

ENTER See “Key.ENTER Con-
stant” on page 156.

Key.ENTER constant represents the key code for the ENTER key.

ESCAPE See “Key.ESCAPE Con-
stant” on page 156.

Key.ESCAPE constant represents the key code for the ESCAPE
key.

HOME See “Key.HOME Con-
stant” on page 157.

Key.HOME constant represents the key code for the HOME key.

Using Help | Contents | Index Back 154

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 154

Methods

Key.BACKSPACE Constant
Key.BACKSPACE

Description

The Key.BACKSPACE constant represents the key code for the BACKSPACE key. It is passed to
Key.isDown() to determine whether the BACKSPACE key is pressed. It is returned by
Key.getCode() if the BACKSPACE key was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

INSERT See “Key.INSERT Con-
stant” on page 157.

Key.INSERT constant represents the key code for the INSERT
key.

LEFT See “Key.LEFT Con-
stant” on page 159.

Key.LEFT constant represents the key code for the LEFT key.

PGDN See “Key.PGDN Con-
stant” on page 159.

Key.PGDN constant represents the key code for the PGDN key.

PGUP See “Key.PGUP Con-
stant” on page 159.

Key.PGUP constant represents the key code for the PGUP key.

RIGHT See “Key.RIGHT Con-
stant” on page 159.

Key.RIGHT constant represents the key code for the RIGHT key.

SHIFT See “Key.SHIFT Con-
stant” on page 160.

Key.SHIFT constant represents the key code for the SHIFT key.

SPACE See “Key.SPACE Con-
stant” on page 160.

Key.SPACE constant represents the key code for the SPACE key.

TAB See “Key.TAB Constant”
on page 160.

Key.TAB constant represents the key code for the TAB key.

UP See “Key.UP Constant”
on page 160.

Key.UP constant represents the key code for the UP key.

getAscii() See “Key.getAscii()
Method” on page 156.

Get the ASCII code of the last key pressed.

getCode() See “Key.getCode()
Method” on page 157.

Get the key code of the last key pressed.

isDown() See “Key.isDown()
Method” on page 158.

Check whether the specified key is currently down.

isToggled() See “Key.isToggled()
Method” on page 158.

Check whether the Num lock, Caps lock, or Scroll lock
key is toggled on.

Using Help | Contents | Index Back 155

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 155

Key.CAPSLOCK Constant
Key.CAPSLOCK

Description

The Key.CAPSLOCK constant represents the key code for the CAPSLOCK key. It is passed to
Key.isToggled to determine whether the CAPSLOCK key is on. It is returned by Key.getCode()
if CAPSLOCK key was last key pressed.

See also

“Key.isToggled() Method” on page 158, “Key.getCode() Method” on page 157

Key.CONTROL Constant
Key.CONTROL

Description

The Key.CONTROL constant represents the key code for the CONTROL key. It is passed to
Key.isDown() to determine whether the CONTROL key is pressed. It is returned by
Key.getCode() if CONTROL key was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.DELETEKEY Constant
Key.DELETEKEY

Description

The Key.DELETEKEY constant represents the key code for the DELETEKEY key. It is passed to
Key.isDown() to determine whether the DELETEKEY key is pressed. It is returned by
Key.getCode() if the DELETEKEY key was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.DOWN Constant
Key.DOWN

Description

The Key.DOWN constant represents the key code for the DOWN key. It is passed to Key.isDown()
to determine whether the DOWN key is pressed. It is returned by Key.getCode() if the DOWN key
was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Using Help | Contents | Index Back 156

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 156

Key.END Constant
Key.END

Description

The Key.END constant represents the key code for the END key. It is passed to Key.isDown() to
determine whether the END key is pressed. It is returned by Key.getCode() if the END key was
last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.ENTER Constant
Key.ENTER

Description

The Key.ENTER constant represents the key code for the ENTER key. It is passed to
Key.isDown() to determine whether the ENTER key is pressed. It is returned by Key.getCode()
if the ENTER key was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.ESCAPE Constant
Key.ESCAPE

Description

The Key.ESCAPE constant represents the key code for the ESCAPE key. It is passed to
Key.isDown() to determine whether the ESCAPE key is pressed. It is returned by
Key.getCode() if the ESCAPE key was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.getAscii() Method
Key.getAscii()

Description

The Key.getAscii() method returns the ASCII code of the last key pressed.

Example

In the onKeyUp or onKeyDown event:

var asciiVal = Key.getAscii();

if (asciiVal == 102)

{

trace("Lower case ‘f’ has been pressed");

Using Help | Contents | Index Back 157

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 157

//your code

}

See also

“Key.getCode() Method” on page 157

Key.getCode() Method
Key.getCode()

Description

The Key.getCode() method returns the key code of the last key pressed.

Example

In the onKeyUp or onKeyDown event:

if (Key.getCode() == Key.ESCAPE)

{

trace("Key.ESCAPE was pressed.");

//your code

}

See also

“Key.getAscii() Method” on page 156

Key.HOME Constant
Key.HOME

Description

The Key.HOME constant represents the key code for the HOME key. It is passed to Key.isDown()
to determine whether the HOME key is pressed. It is returned by Key.getCode() if the HOME key
was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.INSERT Constant
Key.INSERT

Description

The Key.INSERT constant represents the key code for the INSERT key. It is passed to
Key.isDown() to determine whether INSERT key is pressed. It is returned by Key.getCode() if
the INSERT key was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Using Help | Contents | Index Back 158

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 158

Key.isDown() Method
Key.isDown(keycode)

Description

The Key.isDown() method is used to check whether the specified key is currently down.

Parameters

Returns

true if the key is pressed; false otherwise.

Example

In the onKeyUp or onKeyDown event:

if (Key.isDown(key.RIGHT))

{

trace("Right arrow key was pressed.");

//your code

}

See also

“Key.isToggled() Method” on page 158

Key.isToggled() Method
Key.isToggled(keycode)

Description

The Key.isToggled() method is used to see if the Caps lock, Num lock, or Scroll lock key is
on.

Parameters

Returns

true if the Num lock, Caps lock, or Scroll lock key is toggled on; false otherwise.

Example

In the onKeyUp or onKeyDown event:

if (Key.isToggled(20))//detect whether Caps lock key is toggled on

keycode The key code to check for.

keycode If this parameter is Key.CAPSLOCK or the integer 20, then the method
checks for whether the Caps lock key is toggled on. If the parameter is
the integer 144, then the method checks for whether the Num lock key
is toggled on. If the parameter is the integer 145, then the method
checks for whether the Scroll lock key is toggled on.

Using Help | Contents | Index Back 159

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 159

{

trace("Caps lock key is on.");

//your code

}

See also

“Key.isDown() Method” on page 158

Key.LEFT Constant
Key.LEFT

Description

The Key.LEFT constant represents the key code for the LEFT key. It is passed to Key.isDown()
to determine whether the LEFT key is pressed. It is returned by Key.getCode() if the LEFT key
was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.PGDN Constant
Key.PGDN

Description

The Key.PGDN constant represents the key code for the PGDN key. It is passed to Key.isDown()
to determine whether the PGDN key is pressed. It is returned by Key.getCode() if the PGDN key
was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.PGUP Constant
Key.PGUP

Description

The Key.PGUP constant represents the key code for the PGUP key. It is passed to Key.isDown()
to determine whether the PGUP key is pressed. It is returned by Key.getCode() if the PGUP key
was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.RIGHT Constant
Key.RIGHT

Using Help | Contents | Index Back 160

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 160

Description

The Key.RIGHT constant represents the key code for the RIGHT key. It is passed to
Key.isDown() to determine whether the RIGHT key is pressed. It is returned by Key.getCode()
if the RIGHT key was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.SHIFT Constant
Key.SHIFT

Description

The Key.SHIFT constant represents the key code for the SHIFT key. It is passed to
Key.isDown() to determine whether the SHIFT key is pressed. It is returned by Key.getCode()
if the SHIFT key was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.SPACE Constant
Key.SPACE

Description

The Key.SPACE constant represents the key code for the SPACE key. It is passed to
Key.isDown() to determine whether the SPACE key is pressed. It is returned by Key.getCode()
if the SPACE key was last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.TAB Constant
Key.TAB

Description

The Key.TAB constant represents the key code for the TAB key. It is passed to Key.isDown() to
determine whether the TAB key is pressed. It is returned by Key.getCode() if the TAB key was
last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

Key.UP Constant
Key.UP

Using Help | Contents | Index Back 161

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 161

Description

The Key.UP constant represents the key code for the UP key. It is passed to Key.isDown() to
determine whether the UP key is pressed. It is returned by Key.getCode() if the UP key was
last key pressed.

See also

“Key.getCode() Method” on page 157, “Key.isDown() Method” on page 158

_leveln Global Property
_leveln

Description

The _leveln global property is used to explicitly refer to the levels of the Flash Player and it
is used to access the contents of those levels. It is used to specify the level into which to
load a SWF file using the loadMovie() global function or to load variables using the
loadVariables() global function and it is used to refer to that level after loading. The _root
level movie clip loads at level 0 by default. This property can only be read.

Note: This global property is not supported in Preview mode (except for _level0).

Example

loadMovie("http://devtech.corp.adobe.com/livemotion/billys.swf",
"_level1");

_level1.stop();

See also

“loadMovie() Global Function” on page 162, “loadVariables() Global Function” on page 163

lmFrameOfLabel() Global Function
lmFrameOfLabel(label)

Description

The lmFrameOfLabel() global function returns the frame number at which label resides.

Parameters

Returns

The frame number associated with label, or 0 if label is not found on the composition
timeline.

Example

//returns frame number of "firstThrow" label

lmFrameOfLabel("firstThrow");

label A string identifying the label on the composition (_root’s) timeline.

Using Help | Contents | Index Back 162

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 162

loadMovie() Global Function
loadMovie(url, target)

loadMovie(url, target, howToSendVariables)

Description

The loadMovie() global function loads additional SWF files into the Flash Player. These SWF
files can be loaded into Flash Player levels, or they can be loaded into existing movie clips.
A movie clip can replace itself, even if it is at _level0.

If a new main movie clip is loaded at level 0, every level is unloaded and the effect is the
same as starting a new SWF file in the Flash Player. The movie clip loaded in level 0 sets the
frame rate, background color, and frame size for all other loaded movie clips.

Note: _root does not always refer to _level0. It refers to the root of the current level where
the reference is being made. For instance, if a movie clip in _level2 references _root, it is the
same as referencing _level2.

Movie clips loaded with the loadMovie() global function can be unloaded using the
unloadMovie() global function or the unloadMovieNum() global function. Likewise, a new
movie clip can be loaded into an existing movie clip using the loadMovie() or loadMov-
ieNum() global function.

When a SWF file is loaded into an existing movie clip, the onData event handler is called.
Even though the contents of the movie clip are replaced, the movie clip handlers are not.
These include onEnterFrame, onLoad, onUnload, onData, onMouseDown, onMouseUp,
onMouseMove, onKeyDown, and onKeyUp. Everything else—including button handlers,
state scripts, and objects—are replaced. This movie clip “shell” concept is important to
keep in mind because it means that, when using loadMovie() and unloadMovie(), a movie
clip instance is never really removed from the composition. Movie clip content is simply
moved in and out of the shell.

Note: This method is not supported in Preview mode.

Parameters

Example

loadMovie("http://devtech.corp.adobe.com/docs/livemotion/
billys.swf", "_level1");

loadMovie("file:///C|/coolestMovie.swf", "_level1");

url A string specifying the URL from which to load the SWF file.

target A path or a reference to another movie clip that the new SWF file will
replace, or the player level. The loaded movie clip inherits the position,
scaling, and rotation of the movie clip it’s replacing.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables. This
parameter is a string literal. Specify GET to send variables via get (i.e.,
tacked onto the end of the URL) or POST to send them with post (i.e., put
into the body of the request). Both methods send them in application/x-
www-form-urlencoded MIME format. All user-defined variables are sent.

Using Help | Contents | Index Back 163

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 163

See also

“loadMovieNum() Global Function” on page 163, “unloadMovie() Global Function” on
page 225, “unloadMovieNum() Global Function” on page 226, “MovieClip.loadMovie()
Method” on page 185

loadMovieNum() Global Function
loadMovieNum(url, level)

loadMovieNum(url, level, howToSendVariables)

Description

The loadMovieNum() global function is the same as loadMovie() except that the second
parameter must be specified as a number. With loadMovieNum() you cannot specify the
name of another movie clip to be replaced.

Note: This method is not supported in Preview mode.

Parameters

See also

“loadMovie() Global Function” on page 162, “unloadMovie() Global Function” on
page 225, “unloadMovieNum() Global Function” on page 226, “MovieClip.loadMovie()
Method” on page 185

loadVariables() Global Function
loadVariables(url, target)

loadVariables(url, target, howToSendVariables)

Description

The loadVariables() global function loads variables fetched from the specified URL into
target. The movie clip's onData event handler is called when the variables have been
loaded. The data that’s loaded is scoped to the movie clip/level into which it’s loaded. All
the values loaded are considered the string data type. If a variable to be loaded is not
already declared within target, then it is added as a new property of target and can be
accessed using the standard target.property syntax or handled in the same way as any
other variable.

The data fetched from the URL must be in the application/x-www-form-urlencoded MIME
format.

Note: Variables cannot be loaded from a local file in Preview mode. However, HTTP
requests for external data can be made.

url A string specifying the URL from which to load the SWF file.

level The player level number into which to load the SWF file. Must be a non-
negative integer.

howToSendVariables (Optional) A string literal. GET or POST.

Using Help | Contents | Index Back 164

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 164

Parameters

Example

loadVariables("http://www.myServer.com/cgibin/stockdata.pl",this,"GET");

See also

“loadVariablesNum() Global Function” on page 164, “getURL() Global Function” on
page 149, “MovieClip.getURL() Method” on page 182, “MovieClip.loadVariables() Method”
on page 186

loadVariablesNum() Global Function
loadVariablesNum (url, level)

loadVariablesNum (url, level, howToSendVariables)

Description

The loadVariablesNum() global function is the same as loadVariables() except the second
argument must be a player level number.

Parameters

See also

“loadVariables() Global Function” on page 163, “getURL() Global Function” on page 149,
“loadMovie() Global Function” on page 162, “loadMovieNum() Global Function” on
page 163

url A string specifying the URL from which to get the variables. For secu-
rity reasons, the URL must be in the same domain as that from which
the movie clip was downloaded.

target A path or reference to an existing movie clip or player level in which
the loaded variables are defined.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables. If
omitted, variables are retrieved but none are sent. This parameter is
a string literal. Specify GET to send variables via get (i.e., tacked onto
the end of the URL) or POST to send them with post (i.e., put into the
body of the request). Both methods send them in application/x-
www-form-urlencoded MIME format. All user-defined variables are
sent.

url A string specifying the URL from which to get the variables.

level The player level number in which the loaded variables are
defined. Must be a non-negative integer.

howToSendVariables (Optional) A string literal. GET or POST.

Using Help | Contents | Index Back 165

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 165

Math Object
Description

The Math object has constants and methods to facilitate use of common mathematical
functions and values. The Math object and its constants and methods are static—you do
not create Math objects using a constructor. For example, you refer to the constant PI as
Math.PI and you call the sine function as Math.sin(x), where x is the method’s argument.
Constants are defined with the full precision of real numbers.

Constants

Methods

E See “Math.E Constant” on
page 169.

Euler's constant and the base of natural loga-
rithms (approximately 2.718).

LN2 See “Math.LN2 Constant” on
page 169.

Natural logarithm of 2 (approximately 0.693).

LN10 See “Math.LN10 Constant” on
page 169.

Natural logarithm of 10 (approximately 2.302).

LOG2E See “Math.LOG2E Constant”
on page 170.

NBase 2 logarithm of E (approximately 1.442).

LOG10E See “Math.LOG10E Constant”
on page 170.

Base 10 logarithm of E (approximately 0.434).

PI See “Math.PI Constant” on
page 171.

Ratio of the circumference of a circle to its diame-
ter (approximately 3.14159).

SQRT1_2 See “Math.SQRT1_2 Con-
stant” on page 172.

Square root of 1/2; equivalently, 1 over the square
root of 2 (approximately 0.707).

SQRT2 See “Math.SQRT2 Constant”
on page 173.

Square root of 2 (approximately 1.414).

abs() See “Math.abs() Method” on
page 166.

Return the absolute value of a number.

acos() See “Math.acos() Method” on
page 166.

Return the arccosine (in radians) of a number.

asin() See “Math.asin() Method” on
page 167.

Return the arcsine (in radians) of a number.

atan() See “Math.atan() Method” on
page 167.

Return the arctangent (in radians) of a number.

atan2() See “Math.atan2() Method”
on page 167.

Return the arctangent (in radians) of the quotient
of the arguments (y/x).

ceil() See “Math.ceil() Method” on
page 168.

Return the value rounded up.

Using Help | Contents | Index Back 166

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 166

Math.abs() Method
Math.abs(x)

Description

The abs() method returns the absolute value of a number.

Parameters

Math.acos() Method
Math.acos(x)

Description

The acos() method returns the arccosine (in radians) of a number. x must fall in the range
of -1.0 and 1.0. If it does not, the method returns NaN.

cos() See “Math.cos() Method” on
page 168.

Return the cosine of an angle provided in radians.

exp() See “Math.exp() Method” on
page 169.

Return Math.E raised to the power of a number.

floor() See “Math.floor() Method” on
page 169.

Return the value rounded down.

log() See “Math.log() Method” on
page 170.

Return the natural logarithm of a number.

max() See “Math.max() Method” on
page 170.

Return the maximum of two numbers.

min() See “Math.min() Method” on
page 171.

Return the minimum of two numbers.

pow() See “Math.pow() Method” on
page 171.

Return XY.

random() See “Math.random() Method”
on page 171.

Return a pseudo-random number from 0.0 up to
but not including 1.0.

round() See “Math.round() Method”
on page 172.

Return the value of a number rounded to the
nearest integer.

sin() See “Math.sin() Method” on
page 172.

Return the sine of an angle provided in radians.

sqrt() See “Math.sqrt() Method” on
page 172.

Return the square root of a number.

tan() See “Math.tan() Method” on
page 173.

Return the tangent of an angle provided in radi-
ans.

x A number.

Using Help | Contents | Index Back 167

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 167

Parameters

See also

“Math.asin() Method” on page 167, “Math.atan() Method” on page 167, “Math.atan2()
Method” on page 167, “Math.cos() Method” on page 168, “Math.sin() Method” on
page 172, “Math.tan() Method” on page 173

Math.asin() Method
Math.asin(x)

Description

The asin() method returns the arcsine (in radians) of a number. x must fall in the range of -
1.0 and 1.0. If it does not, the method returns NaN.

Parameters

See also

“Math.acos() Method” on page 166, “Math.atan() Method” on page 167, “Math.atan2()
Method” on page 167, “Math.cos() Method” on page 168, “Math.sin() Method” on
page 172, “Math.tan() Method” on page 173

Math.atan() Method
Math.atan(x)

Description

The atan() method returns the arctangent (in radians) of a number. x must be in the range
of -Infinity and Infinity, inclusive.

Parameters

See also

“Math.acos() Method” on page 166, “Math.asin() Method” on page 167, “Math.atan2()
Method” on page 167, “Math.cos() Method” on page 168, “Math.sin() Method” on
page 172, “Math.tan() Method” on page 173

Math.atan2() Method
Math.atan2(y,x)

x A number between -1.0 and 1.0.

x A number between -1.0 and 1.0.

x A number in the range of -Infinity and Infinity, inclusive.

Using Help | Contents | Index Back 168

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 168

Description

The atan2() method returns the arctangent (in radians) of the quotient of its arguments (y/
x). Note that the arguments to this function pass the y-coordinate first and the x-
coordinate second.

Parameters
.

See also

“Math.acos() Method” on page 166, “Math.asin() Method” on page 167, “Math.atan()
Method” on page 167, “Math.cos() Method” on page 168, “Math.sin() Method” on
page 172, “Math.tan() Method” on page 173

Math.ceil() Method
Math.ceil(x)

Description

The ceil() method returns the value rounded up to the nearest integer.

Parameters

See also

“Math.floor() Method” on page 169

Math.cos() Method
Math.cos(x)

Description

The cos() method returns the cosine of an angle provided in radians. The result is a value
between -1 and 1.

Parameters

See also

“Math.acos() Method” on page 166, “Math.asin() Method” on page 167, “Math.atan()
Method” on page 167, “Math.atan2() Method” on page 167, “Math.sin() Method” on
page 172, “Math.tan() Method” on page 173

x,y Two numbers representing a point.

x A number.

x An angle, in radians.

Using Help | Contents | Index Back 169

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 169

Math.E Constant
Math.E

Description

The E constant represents Euler's constant and the base of natural logarithms (approxi-
mately 2.718).

Math.exp() Method
Math.exp(x)

Description

The exp() method returns Math.E raised to the power of x.

Parameters

See also

“Math.E Constant” on page 169, “Math.log() Method” on page 170, “Math.pow() Method”
on page 171

Math.floor() Method
Math.floor(x)

Description

The floor() method returns the value rounded down to the nearest integer.

Parameters

See also

“Math.ceil() Method” on page 168

Math.LN2 Constant
Math.LN2

Description

The LN2 constant is the natural logarithm of 2 (approximately 0.693).

Math.LN10 Constant
Math.LN10

x A number.

x A number.

Using Help | Contents | Index Back 170

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 170

Description

The LN10 constant is the natural logarithm of 10 (approximately 2.302).

Math.log() Method
Math.log(x)

Description

The log() method returns the natural logarithm of a number.

Parameters

See also

“Math.exp() Method” on page 169, “Math.pow() Method” on page 171

Math.LOG2E Constant
Math.LOG2E

Description

The LOG2E constant is the base 2 logarithm of E (approximately 1.442).

Math.LOG10E Constant
Math.LOG10E

Description

The LOG10E constant is the base 10 logarithm of E (approximately 0.434).

Math.max() Method
Math.max(x,y)

Description

The max() method returns the maximum of two numbers.

Parameters

See also

“Math.min() Method” on page 171

x A number.

x,y Two numbers.

Using Help | Contents | Index Back 171

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 171

Math.min() Method
Math.min(x,y)

Description

The min() method returns the minimum of two numbers.

Parameters

See also

“Math.max() Method” on page 170

Math.PI Constant
Math.PI

Description

The PI constant is the ratio of the circumference of a circle to its diameter (approximately
3.14159).

Math.pow() Method
Math.pow(base,exponent)

Description

The pow() method returns XY.

Parameters

See also

“Math.exp() Method” on page 169, “Math.log() Method” on page 170

Math.random() Method
Math.random()

Description

The random() method returns a pseudo-random number from 0.0 up to but not including
1.0. The random number generator is seeded from the current time.

x,y Two numbers.

base The base number.

exponent The exponent to which base is raised.

Using Help | Contents | Index Back 172

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 172

Math.round() Method
Math.round(x)

Description

The round() method returns the value of a number rounded to the nearest integer. If the
fractional portion of number is .5 or greater, the argument is rounded to the next higher
integer. If the fractional portion of number is less than .5, the argument is rounded to the
next lower integer.

Parameters

Math.sin() Method
Math.sin(x)

Description

The sin() method returns the sine of an angle provided in radians.

Parameters

See also

“Math.acos() Method” on page 166, “Math.asin() Method” on page 167, “Math.atan()
Method” on page 167, “Math.atan2() Method” on page 167, “Math.cos() Method” on
page 168, “Math.tan() Method” on page 173

Math.sqrt() Method
Math.sqrt(x)

Description

The sqrt() method returns the square root of a number.

Parameters

Math.SQRT1_2 Constant
Math.SQRT1_2

Description

The SQRT1_2 constant represents the square root of 1/2—equivalently, 1 over the square
root of 2, approximately 0.707.

x A number.

x An angle, in radians.

x A number.

Using Help | Contents | Index Back 173

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 173

Math.SQRT2 Constant
Math.SQRT2

Description

The SQRT2 constant represents the square root of 2 (approximately 1.414).

Math.tan() Method
Math.tan(x)

Description

The tan() method returns the tangent of an angle provided in radians.

Parameters

See also

“Math.acos() Method” on page 166, “Math.asin() Method” on page 167, “Math.atan()
Method” on page 167, “Math.atan2() Method” on page 167, “Math.cos() Method” on
page 168, “Math.sin() Method” on page 172

Mouse Object
Description

The Mouse object is used to show or hide the cursor. The Mouse object and its methods are
static—you do not create Mouse objects using a constructor.

Properties

None.

Methods

Mouse.hide() Method
Mouse.hide()

Description

The hide() method hides the mouse cursor.

x An angle, in radians.

hide() See “Mouse.hide()
Method” on page 173.

Hide the mouse cursor.

show() See “Mouse.show()
Method” on page 174.

Show the mouse cursor.

Using Help | Contents | Index Back 174

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 174

See also

“Mouse.show() Method” on page 174

Mouse.show() Method
Mouse.show()

Description

The show() method shows the mouse cursor.

See also

“Mouse.hide() Method” on page 173

MovieClip Object
Description

The MovieClip object is the object at the heart of LiveMotion. _root itself is an instance of
the MovieClip object, and many of the MovieClip methods are also available as global
functions.

Constructor

None. Movie clips are created manually using the LiveMotion Composition window. In
addition, new movie clips can be added with attachMovie() and duplicateMovieClip().

Properties

_alpha See “MovieClip._alpha Prop-
erty” on page 177.

Opacity of the movie clip on a scale of 0 (trans-
parent) to 100 (opaque).

_currentfram
e

See “MovieClip._currentframe
Property” on page 178.

Location of the movie clip playhead.

_droptarget See “MovieClip._droptarget
Property” on page 179.

Absolute path of a movie clip over which the
movie clip passes during drag operations by the
user.

_framesloade
d

See “Mov-
ieClip._framesloaded Prop-
erty” on page 180.

Number of movie clip frames that have been
loaded.

_height See “MovieClip._height Prop-
erty” on page 184.

Height of the movie clip in pixels.

_name See “MovieClip._name Prop-
erty” on page 187.

Name of the movie clip.

_parent See “MovieClip._parent Prop-
erty” on page 187.

Movie clip containing this movie clip.

_rotation See “MovieClip._rotation
Property” on page 188.

Rotation angle of the movie clip in degrees.

Using Help | Contents | Index Back 175

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 175

Methods

_target See “MovieClip._target Prop-
erty” on page 190.

Absolute path of the movie clip.

_totalframes See “MovieClip._totalframes
Property” on page 190.

Number of frames in the movie clip.

_url See “MovieClip._url Property”
on page 191.

URL from which the movie clip was loaded.

_visible See “MovieClip._visible Prop-
erty” on page 191.

Boolean indicating whether the movie clip is
visible.

_width See “MovieClip._width Prop-
erty” on page 192.

Width of the movie clip in pixels.

_x See “MovieClip._x Property”
on page 192.

Horizontal location of the movie clip in pixels.

_xmouse See “MovieClip._xmouse
Property” on page 192.

Horizontal location of the mouse cursor in pix-
els.

_xscale See “MovieClip._xscale Prop-
erty” on page 193.

Horizontal scaling factor of the movie clip.

_y See “MovieClip._y Property”
on page 193.

Vertical location of the movie clip in pixels.

_ymouse See “MovieClip._ymouse
Property” on page 193.

Vertical location of the mouse cursor in pixels.

_yscale See “MovieClip._yscale Prop-
erty” on page 194.

Vertical scaling factor of the movie clip.

attachMovie() See “MovieClip.attach-
Movie() Method” on
page 177.

Attach the named movie clip (passed in
as an argument) to the movie clip.

duplicateMov-
ieClip()

See “MovieClip.duplicate-
MovieClip() Method” on
page 179.

Duplicate this movie clip. Also a global
movie clip function. See “duplicateMov-
ieClip() Global Function” on page 146

getBounds() See “MovieClip.get-
Bounds() Method” on
page 180.

Return bounds of the movie clip. The
returned object contains the values in
the properties xMin, XMax, yMin and yMax.

getBytesLoaded() See “MovieClip.getBytes-
Loaded() Method” on
page 181.

Return the number of bytes already
loaded if the movie clip is external
(loaded with movieClip.loadMovie()). If
the movie clip is internal, the number
returned is always the same as that
returned by movieClip.getBytesTo-
tal().

Using Help | Contents | Index Back 176

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 176

getBytesTotal() See “MovieClip.getBytesTo-
tal() Method” on page 181.

Return the size of the movie clip in bytes.
When running in Preview mode, you will
get an arbitrary number.

getURL() See “MovieClip.getURL()
Method” on page 182.

Load the URL into the browser. Also a glo-
bal movie clip function. See “getURL()
Global Function” on page 149.

globalToLocal() See “MovieClip.globalToLo-
cal() Method” on page 182.

Convert the given global point to local
coordinates.

gotoAndPlay() See “MovieClip.gotoAnd-
Play() Method” on
page 183.

Go to the specified label and play. Also a
global movie clip function. See
“gotoAndPlay() Global Function” on
page 151.

gotoAndStop() See “MovieClip.gotoAnd-
Stop() Method” on
page 183.

Go to the specified label and stop. Also a
global movie clip function. See
“gotoAndStop() Global Function” on
page 151.

hitTest() See “MovieClip.hitTest()
Method” on page 184.

Return a boolean indicating whether the
movie clip intersects with a given clip
(passed in as an argument) or given x/y
coordinates.

lmSetCurrent-
State()

See “MovieClip.lmSetCur-
rentState() Method” on
page 185.

Change the state of the movie clip.

loadMovie() See “MovieClip.load-
Movie() Method” on
page 185.

Load an external SWF file into the player.
Also a global movie clip function. See
“loadMovie() Global Function” on
page 162

loadVariables() See “MovieClip.loadVari-
ables() Method” on
page 186.

Load variables fetched from the specified
URL. The movie clip’s onData handler is
called when the variables have been
loaded. Also a global movie clip function.
See “loadVariables() Global Function” on
page 163.

localToGlobal() See “MovieClip.localToGlo-
bal() Method” on page 187.

Convert the given local point to global
coordinates.

nextFrame() See “MovieClip.next-
Frame() Method” on
page 187.

Go to the next frame and stop playing.
Also a global movie clip function. See
“nextFrame() Global Function” on
page 194.

play() See “MovieClip.play()
Method” on page 187.

Start playing. Also a global movie clip
function. See “play() Global Function” on
page 203.

Using Help | Contents | Index Back 177

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 177

MovieClip._alpha Property
movieClip._alpha

Description

The _alpha property sets the opacity of the movie clip. 0 is transparent; 100 is opaque. This
property can be read or written.

MovieClip.attachMovie() Method
movieClip.attachMovie(exportName, newName, depth)

Description

The attachMovie() method creates a new instance of exportName and attaches it to the
movie clip by placing it at the designated depth in movieClip’s programmatic stack.
Remove the attached movie clip by using the movieClip.removeMovieClip() method or the
removeMovieClip() global function. The movie clip may also be removed by placing
another movie clip at the same depth in the programmatic stack.

prevFrame() See “MovieClip.prev-
Frame() Method” on
page 188.

Go to the previous frame and stop play-
ing. Also a global movie clip function. See
“prevFrame() Global Function” on
page 203.

removeMovieClip() See “MovieClip.remove-
MovieClip() Method” on
page 188.

Delete a duplicate or attached movie clip.
Also a global movie clip function. See
“removeMovieClip() Global Function” on
page 204.

startDrag() See “MovieClip.startDrag()
Method” on page 188.

Start dragging a movie clip. Also a global
movie clip function. See “startDrag() Glo-
bal Function” on page 213.

stop() See “MovieClip.stop()
Method” on page 189.

Stop playing. Also a global movie clip
function. See “stop() Global Function” on
page 213.

stopDrag() See “MovieClip.stopDrag()
Method” on page 189.

Stop any drag operation in progress. Also
a global movie clip function. See “stop-
Drag() Global Function” on page 214.

swapDepths() See “MovieClip.swap-
Depths() Method” on
page 190.

Swap the movie clip’s depth with that of
another movie clip.

unloadMovie() See “MovieClip.unload-
Movie() Method” on
page 191.

Unload a movie clip that was previously
loaded with loadmovie(). Also a global
movie clip function. See “unloadMovie()
Global Function” on page 225.

valueOf() See “MovieClip.valueOf()
Method” on page 191.

Returns the absolute path to the movie
clip using dot (as opposed to slash) nota-
tion.

Using Help | Contents | Index Back 178

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 178

exportName is the sharing name of the movie clip that is to be attached.

A movie clip can be attached to the _root movie clip as well using the syntax
_root.attachMovie(exportName, newName, depth).

A movie clip instanced using attachMovie() becomes a child of the movie clip through
which the method was called, and is in that movie clip’s programmatic stack. For example:

clipA.attachMovie(exportName, "clipB", depth);

clipB is a child of clipA and is in clipA’s programmatic stack.

In contrast, a movie clip instanced using duplicateMovieClip() becomes a child of the
parent of the movie clip through which the method was called, and is in the parent’s
programmatic stack. For example:

clipA.duplicateMovieClip("clipB", depth);

clipB is a child of clipA._parent and is in clipA._parent’s programmatic stack.

Note: In Preview mode, the movie clip that is attached is the local version only. If the “Use
External Asset” feature is used from the Export palette, this will not be the same movie clip
that is actually used when the SWF file is executing in the Flash Player.

Parameters

See also

“removeMovieClip() Global Function” on page 204, “MovieClip.removeMovieClip()
Method” on page 188, “loadMovie() Global Function” on page 162, “unloadMovie() Global
Function” on page 225, “MovieClip.loadMovie() Method” on
page 185,“MovieClip.unloadMovie() Method” on page 191,“duplicateMovieClip() Global
Function” on page 146, “MovieClip.duplicateMovieClip() Method” on
page 179,“Sound.attachSound() Method” on page 208

MovieClip._currentframe Property
movieClip._currentframe

Description

The _currentframe property specifies the location (frame number) of the playhead of
movieClip. This property can only be read.

exportName The movie clip to be attached. This movie clip already exists in the current
SWF file. It was assigned its sharing name (exportName) via the Export palette.
A remote copy may or may not have been loaded when the SWF file was
loaded into the Flash player, depending on whether the “Use External Asset”
feature was used from the Export palette.

newName A string indicating the name for the attached movie clip.

depth The depth for the movie clip in the programmatic stack.

Using Help | Contents | Index Back 179

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 179

MovieClip._droptarget Property
movieClip._droptarget

Description

The _droptarget property is a string value that specifies the absolute path (in slash
notation) of a movie clip over which movieClip passes during drag operations by the user.
To convert a _droptarget string to a movie clip reference, use eval(). This property can only
be read.

MovieClip.duplicateMovieClip() Method
movieClip.duplicateMovieClip(newName, depth)

Description

The duplicateMovieClip() method duplicates movieClip. Duplicate movie clips always start
playing at frame 1. The duplicate movie clip inherits shape transformations but not the
current values of movieClip’s user-defined variables. The duplicate movie clip is placed in
movieClip’s parent’s programmatic stack. A programmatic stack holds child movie clips;
when you duplicate a movie clip the new movie clip will have the same parent as the
original, and thus reside in the parent’s programmatic stack. The removeMovieClip()
method is used to delete duplicate movie clips.

movieClip.removeMovieClip() can be used by duplicate movie clips to delete themselves, or
the removeMovieClip() global function can be used to delete duplicate movie clips.
Duplicate movie clips can also be removed by placing another movie clip at the same
depth in the programmatic stack.

A movie clip instanced using duplicateMovieClip() becomes a child of the parent of the
movie clip through which the method was called, and is in the parent’s programmatic
stack. For example:

clipA.duplicateMovieClip("clipB", depth);

clipB is a child of clipA._parent and is in clipA._parent’s programmatic stack.

In contrast, a movie clip instanced using attachMovie() becomes a child of the movie clip
through which the method was called, and is in that movie clip’s programmatic stack. For
example:

clipA.attachMovie(exportName, "clipB", depth);

clipB is a child of clipA and is in clipA’s programmatic stack.

Parameters

newName A string indicating the new name for the duplicate movie clip.

depth An integer indicating the depth at which the duplicate movie clip is
placed in movieClip’s parent’s programmatic stack.

Using Help | Contents | Index Back 180

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 180

Example

_root.baseball.duplicateMovieClip ("newBaseball", 1);//creates new
baseball

_root.newBaseball._x += 25;//moves new baseball along x axis

_root.newBaseball._y += 25;//moves new baseball along y axis

See also

“removeMovieClip() Global Function” on page 204, “MovieClip.removeMovieClip()
Method” on page 188, “loadMovie() Global Function” on page 162, “unloadMovie() Global
Function” on page 225, “MovieClip.loadMovie() Method” on
page 185,“MovieClip.unloadMovie() Method” on page 191,“duplicateMovieClip() Global
Function” on page 146, “MovieClip.attachMovie() Method” on page 177

MovieClip._framesloaded Property
movieClip._framesloaded

Description

The _framesloaded property holds the number of frames that have already been
downloaded. This property can only be read.

This property is often used in conjunction with the _totalframes property to create a
preloader for the _root movie clip. For example, you could place the following code in a
keyframe script on a frame somewhere between the beginLoop and Start labels. The _root
movie clip loops between the beginLoop label and the frame where the keyframe script is,
then jumps to the Start label when the entire _root movie clip has downloaded.

if (_root._framesloaded == _root._totalframes)

{

_root.gotoAndPlay("Start");

}

else

{

 _root.gotoAndPlay("beginLoop");

}

See also

“MovieClip._totalframes Property” on page 190

MovieClip.getBounds() Method
movieClip.getBounds()

movieClip.getBounds(targetCoordinateSpace)

Description

The getBounds() method returns the bounds of the movie clip as an object. If specified, the
values returned represent the coordinate space of targetCoordinateSpace.

Using Help | Contents | Index Back 181

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 181

Parameters

Returns

An object with four properties: obj.xMin, obj.xMax, obj.yMin, obj.yMax.

Example

var coordinates = _root.baseball.getBounds();

trace(coordinates.xMin);//prints value

trace(coordinates.xMax);//prints value

trace(coordinates.yMin);//prints value

trace(coordinates.yMax);//prints value

var coordinates = _root.baseball.getBounds("_root");

trace(coordinates.xMin);//prints value

trace(coordinates.xMax);//prints value

trace(coordinates.yMin);//prints value

trace(coordinates.yMax);//prints value

See also

“MovieClip.globalToLocal() Method” on page 182, “MovieClip.localToGlobal() Method” on
page 187

MovieClip.getBytesLoaded() Method
movieClip.getBytesLoaded()

Description

The getBytesLoaded() method returns the number of bytes already loaded if movieClip is
external. If internal, the number returned is always the same as that returned by
movieClip.getBytesTotal().

Returns

The number of bytes already loaded for movieClip.

See also

“MovieClip.getBytesTotal() Method” on page 181

MovieClip.getBytesTotal() Method
movieClip.getBytesTotal()

targetCoordinateSpace (Optional) A path or reference to a movie clip in which mov-
ieClip’s bounds are measured. Defaults to movieClip if not
specified.

Using Help | Contents | Index Back 182

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 182

Description

The getBytesTotal() method returns the size of movieClip in bytes. When running in
Preview mode, the number returned is arbitrary.

Returns

The size of movieClip in bytes.

See also

“MovieClip.getBytesLoaded() Method” on page 181

MovieClip.getURL() Method
movieClip.getURL(url, window)

movieClip.getURL(url, window, howToSendVariables)

Description

The getURL()method loads a URL into the web browser. It operates the same as the global
form, except when variables are sent they are sent from the movieClip timeline.

Note: This method is not supported in Preview mode.

Parameters

See also

“getURL() Global Function” on page 149

MovieClip.globalToLocal() Method
movieClip.globalToLocal(point)

Description

The globalToLocal() method converts the given global point to local (movieClip)
coordinates.

url A string specifying the URL to which to hyperlink. This may be a rel-
ative or an absolute pathname, or the name of a document or script.

window (Optional) A string specifying the target frame in the browser—e.g.,
_self (the default), _parent, _top, _blank. If omitted, _self is used.
Custom names can also be used.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables.
This parameter is a string literal. Specify GET to send variables via get
(i.e., tacked onto the end of the URL) or POST to send them with post
(i.e., put into the body of the request). Both methods send them in
application/x-www-form-urlencoded MIME format. All user-defined
variables are sent.

Using Help | Contents | Index Back 183

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 183

Parameters

Example

wheresTheMouse = new Object();

wheresTheMouse.x = _root._xmouse;

wheresTheMouse.y = _root._ymouse;

this.globalToLocal(wheresTheMouse);

//wheresTheMouse.x and wheresTheMouse.y now contain local coordi-
nates

See also

“MovieClip.getBounds() Method” on page 180, “MovieClip.localToGlobal() Method” on
page 187, “Object Class” on page 199

MovieClip.gotoAndPlay() Method
movieClip.gotoAndPlay(label)

Description

The gotoAndPlay() method goes to the specified label and continues playing from label.

Note: Frame numbers should not be passed to this method. The use of labels is recom-
mended.

Parameters

See also

“MovieClip.gotoAndStop() Method” on page 183, “gotoAndPlay() Global Function” on
page 151

MovieClip.gotoAndStop() Method
movieClip.gotoAndStop(label)

Description

The gotoAndStop() method goes to the specified label and stops playing.

Note: Frame numbers should not be passed to this method. The use of labels is recom-
mended.

point An object of type Object with two properties: x and y. x and y are set to the global
coordinates before the object point is passed to globalToLocal().

label A string indicating the destination of the playhead.

Using Help | Contents | Index Back 184

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 184

Parameters

See also

“MovieClip.gotoAndPlay() Method” on page 183, “gotoAndStop() Global Function” on
page 151

MovieClip._height Property
movieClip._height

Description

The _height property represents the height of the movie clip in pixels. The _height
property is based on the content within movieClip. If movieClip has no content, then
_height is 0. _height is also determined by placement of the objects within movieClip: the
farthest object toward the top or bottom determines the value of _height. If objects within
movieClip are moved, _height can change. This property can be read or written.

Note: Only _root.height and _root.width return dimensions of the _root movie clip.

See also

“MovieClip._width Property” on page 192

MovieClip.hitTest() Method
movieClip.hitTest(x, y, shapeFlag)

movieClip.hitTest(target)

Description

The hitTest() method returns a boolean indicating whether movieClip intersects with a
specific point in the composition, or overlaps with another movie clip. When specifying
the hit test, you indicate whether the test involves matching a specific x/y point in the
composition (first form) against just the border of movieClip or all of it, or (second form)
finding any overlap with another clip.

Parameters

label A string indicating the destination of the playhead.

x The horizontal component of the hit test. Defined in global coordinate
space.

y The vertical component of the hit test. Defined in global coordinate space.

shapeFlag A boolean value indicating whether to test just the bounding box (false)
or all pixels (true) of movieClip for overlap with the point.

target A path or reference to a movie clip against which the hit test is made.

Using Help | Contents | Index Back 185

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 185

Returns

true if a hit occurred; false otherwise.

Example

if (this.hitTest(_root._xmouse, _root._ymouse, true))

trace("The mouse has passed over the movie clip");

See also

“MovieClip.getBounds() Method” on page 180

MovieClip.lmSetCurrentState() Method
movieClip.lmSetCurrentState(label)

Description

The lmSetCurrentState() method sets the state of movieClip.

Parameters

Example

if (_root._xmouse < 175 && _root._ymouse > 100)

_root.Spiral.lmSetCurrentState("Purple");

if (_root._xmouse > 175 && _root._ymouse > 100)

_root.Spiral.lmSetCurrentState("Green");

MovieClip.loadMovie() Method
movieClip.loadMovie(url)

movieClip.loadMovie(url, howToSendVariables)

Description

The loadMovie() method brings an external SWF file into the player. It optionally sends
variables to url. movieClip and any programmatically generated movie clips associated
with it are replaced with the new SWF file. Use unloadMovie() to remove the movie clip. The
unloadMovie() global function can also be used to remove the movie clip.

Note: This method is not supported in Preview mode.

label A string representing a movieClip state that was already
defined for movieClip. This can be a predefined state like
over, or a custom state. Must appear in quotes.

Using Help | Contents | Index Back 186

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 186

Parameters

Example

_root.baseball.loadMovie("http://devtech.corp.adobe.com/docs/
livemotion/billys.swf");

See also

“loadMovie() Global Function” on page 162, “unloadMovie() Global Function” on
page 225, “MovieClip.unloadMovie() Method” on page 191

MovieClip.loadVariables() Method
movieClip.loadVariables(url, howToSendVariables)

Description

The loadVariables() method loads variables fetched from the specified URL. The movie
clip's onData event handler is called when all of the variables have been loaded.

The data fetched from the URL must be in the application/x-www-form-urlencoded MIME
format.

Note: Variables cannot be loaded from a local file in Preview mode. However, HTTP
requests for external data can be made.

Parameters

See also

“loadVariables() Global Function” on page 163, “loadVariablesNum() Global Function” on
page 164, “getURL() Global Function” on page 149, “MovieClip.getURL() Method” on
page 182,

url A string representing the URL from which to get the SWF file to
load. This can be an absolute or a relative URL.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables.
This parameter is a string literal. Specify GET to send variables via
get (i.e., tacked onto the end of the URL) or POST to send them
with post (i.e., put into the body of the request). Both methods
send them in application/x-www-form-urlencoded MIME format.
All user-defined variables are sent.

url The URL from which to get the variables. For security reasons, the
URL must be in the same domain as that from which the movie
clip was downloaded.

howToSendVariables (Optional) Omit this parameter if you don’t want to send variables.
This parameter is a string literal. If omitted, variables are loaded
only. Specify GET to send variables via get (i.e., tacked onto the end
of the URL) or POST to send them with post (i.e., put into the body
of the request). Both methods send them in application/x-www-
form-urlencoded MIME format. All user-defined variables are sent.

Using Help | Contents | Index Back 187

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 187

MovieClip.localToGlobal() Method
movieClip.localToGlobal(point)

Description

The localToGlobal() method converts the given local (movieClip) point to global coordi-
nates.

Parameters

See also

“MovieClip.getBounds() Method” on page 180, “MovieClip.globalToLocal() Method” on
page 182, “Object Class” on page 199

MovieClip._name Property
movieClip._name

Description

The _name property of the movie clip represents the name of the movie clip as a string (as
opposed to a reference). This is a relative reference (no pathname is returned). This
property can be read or written.

MovieClip.nextFrame() Method
movieClip.nextFrame()

Description

The nextFrame() method moves the playhead to the next frame and stops the playhead.

See also

“nextFrame() Global Function” on page 194, “MovieClip.prevFrame() Method” on
page 188, “MovieClip.stop() Method” on page 189, “MovieClip.play() Method” on page 187

MovieClip._parent Property
movieClip._parent

Description

The _parent property is a reference (not a string) to the parent of movieClip. This allows
syntax such as: _parent._parent.stop(). This property can only be read.

MovieClip.play() Method
movieClip.play()

point An object of type Object with two properties: x and y. x and
y are set to the local coordinates before the object point is
passed to localToGlobal().

Using Help | Contents | Index Back 188

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 188

Description

The play() method starts playing the timeline of movieClip.

See also

“play() Global Function” on page 203, “MovieClip.prevFrame() Method” on page 188,
“MovieClip.nextFrame() Method” on page 187, “MovieClip.stop() Method” on page 189

MovieClip.prevFrame() Method
movieClip.prevFrame()

Description

The prevFrame() method moves the playhead to the previous frame and stops it there.

See also

“prevFrame() Global Function” on page 203, “MovieClip.nextFrame() Method” on
page 187, “MovieClip.stop() Method” on page 189, “MovieClip.play() Method” on page 187

MovieClip.removeMovieClip() Method
movieClip.removeMovieClip()

Description

The removeMovieClip() method deletes the movie clip from the player. Unlike the remove-
MovieClip() global function, movie clips that call this method can only delete themselves.

See also

“removeMovieClip() Global Function” on page 204, “duplicateMovieClip() Global Function”
on page 146, “MovieClip.duplicateMovieClip() Method” on page 179, “MovieClip.attach-
Movie() Method” on page 177

MovieClip._rotation Property
movieClip._rotation

Description

The _rotation property specifies the rotation of the movie clip in degrees. This property
can be read or written.

MovieClip.startDrag() Method
movieClip.startDrag()

movieClip.startDrag(lockCenter)

movieClip.startDrag(lockCenter, left, top, right, bottom)

Description

The startDrag() method causes movieClip to visually follow the mouse cursor. Use
stopDrag() to halt dragging.

Using Help | Contents | Index Back 189

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 189

Parameters

Example

//onButtonPress event

this.startDrag();

//onButtonRelease event

this.stopDrag();

See also

“MovieClip.stopDrag() Method” on page 189, “startDrag() Global Function” on page 213

MovieClip.stop() Method
movieClip.stop()

Description

The stop() method stops playing the timeline of movieClip.

See also

“stop() Global Function” on page 213, “MovieClip.play() Method” on page 187

MovieClip.stopDrag() Method
movieClip.stopDrag()

Description

The stopDrag() method ends any drag operation currently in progress.

Example

//onButtonPress event

this.startDrag();

//onButtonRelease event

lockCenter (Optional) A boolean indicating whether the draggable mov-
ieClip should be centered under the mouse cursor (true) or
dragged relative to the mouse cursor’s location when clicked
(false). Default is false.

left (Optional) The x-coordinate boundary to the left of which
movieClip cannot be dragged.

top (Optional) The y-coordinate boundary above which mov-
ieClip cannot be dragged.

right (Optional) The x-coordinate boundary to the right of which
movieClip cannot be dragged.

bottom (Optional) The y-coordinate boundary below which mov-
ieClip cannot be dragged.

Using Help | Contents | Index Back 190

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 190

this.stopDrag();

See also

“MovieClip.startDrag() Method” on page 188, “stopDrag() Global Function” on page 214

MovieClip.swapDepths() Method
movieClip.swapDepths(target)

movieClip.swapDepths(depth)

Description

The swapDepths() method changes the position of movieClip in movieClip’s parent’s visual
stacking order (z-order). Movie clips at the top of the stack (higher level numbers) cover
those lower in the stack. You can swap the depths of attached or duplicate movie clips
with manually created clips, but be sure that you test extensively since this has been a
problem area with the Flash Player in the past.

Parameters

Example

movieClip.swapDepths(_root.ellipse);//swaps depths with the movie
clip ellipse

movieClip.swapDepths(3);//swaps depths at level 3

MovieClip._target Property
movieClip._target

Description

The _target property represents the target path of movieClip in absolute terms using slash
notation. To get the path in dot notation, use the targetPath() global function. This
property can only be read.

See also

“targetPath() Global Function” on page 224

MovieClip._totalframes Property
movieClip._totalframes

target A path or reference to a movie clip to be swapped with mov-
ieClip. The movie clip and movieClip must have the same
parent.

depth An integer specifying the level in movieClip’s parent’s visual
stack with which to swap. If another movie clip resides at this
level, then full swapping occurs. Otherwise, movieClip is sim-
ply moved to that level. May be 0. The higher the number, the
more visible is the layer.

Using Help | Contents | Index Back 191

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 191

Description

The _totalframes property specifies the total number of frames in movieClip. It is often
used in conjunction with the _framesloaded property to determine the percentage of total
frames that have already downloaded; when an acceptable number are ready, the movie
clip is started. This property can only be read.

See also

“MovieClip._framesloaded Property” on page 180

MovieClip.unloadMovie() Method
movieClip.unloadMovie()

Description

The unloadMovie() method unloads a movie clip that was previously loaded with
loadMovie().

See also

“unloadMovie() Global Function” on page 225, “MovieClip.loadMovie() Method” on
page 185

MovieClip._url Property
movieClip._url

Description

The _url property specifies the URL of the file from which movieClip was loaded. This
property can only be read.

See also

“loadMovie() Global Function” on page 162, “MovieClip.loadMovie() Method” on page 185

MovieClip.valueOf() Method
movieClip.valueOf()

Description

The valueOf() method returns a string that is the path to movieClip in absolute terms
using dot notation.

See also

“Object.valueOf() Method” on page 201, “targetPath() Global Function” on page 224

MovieClip._visible Property
movieClip._visible

Using Help | Contents | Index Back 192

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 192

Description

The _visible property is a boolean indicating whether movieClip is visible. Visibility: true if
visible; false if hidden. This property can be read or written.

See also

“MovieClip.swapDepths() Method” on page 190, “MovieClip._alpha Property” on page 177

MovieClip._width Property
movieClip._width

Description

The _width property represents the width of the movie clip in pixels. The _width property is
based on the content within movieClip. If movieClip has no content, then _width is 0. _width
is also determined by placement of the objects within movieClip: the farthest object to the
left or right determines the value of _width. If objects within movieClip are moved, _width
can change. This property can be read or written.

Note: Only _root._width and _root._height return dimensions of the _root movie clip.

See also

“MovieClip._height Property” on page 184

MovieClip._x Property
movieClip._x

Description

The _x property specifies the horizontal position of movieClip in pixels.If movieClip is on
the _root timeline, then the coordinate system is based on 0,0 x/y coordinates in the upper
left corner of the composition. If movieClip is contained within another movie clip,
movieClip’s coordinates are relative to the position of the enclosing movie clip’s anchor
point. This property can be read or written.

See also

“MovieClip._y Property” on page 193

MovieClip._xmouse Property
movieClip._xmouse

Description

The _xmouse property specifies the horizontal location of the mouse cursor in pixels in the
local coordinate system of movieClip. If movieClip is _root, then the coordinate system is
based on 0,0 x/y coordinates in the upper left corner of the composition. Otherwise, the
_xmouse coordinate is relative to the position of movieClip’s anchor point. This property can
only be read.

Note: The _xmouse and _ymouse coordinates are relative to the movie clip. Only
_root._xmouse and _root._ymouse return absolute positions.

Using Help | Contents | Index Back 193

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 193

See also

“MovieClip._ymouse Property” on page 193

MovieClip._xscale Property
movieClip._xscale

Description

The _xscale property of movieClip represents the horizontal scaling percentage of the
movie clip relative to its original size. This property can be read or written.

See also

“MovieClip._yscale Property” on page 194

MovieClip._y Property
movieClip._y

Description

The _y property specifies the vertical position of movieClip in pixels.If movieClip is on the
_root timeline, then the coordinate system is based on 0,0 x/y coordinates in the upper left
corner of the composition.If movieClip is contained within another movie clip, movieClip’s
coordinates are relative to the position of the enclosing movie clip’s anchor point. This
property can be read or written.

Note: In the Flash Player, the y-axis is inverted—that is, positive values increase in the
“downward” direction rather than upward.

See also

“MovieClip._x Property” on page 192

MovieClip._ymouse Property
movieClip._ymouse

Description

The _ymouse property specifies the vertical location of the mouse cursor in pixels in the
local coordinate system of movieClip. If movieClip is _root, then the coordinate system is
based on 0,0 x/y coordinates in the upper left corner of the composition. Otherwise, the
_ymouse coordinate is relative to the position of movieClip’s anchor point. This property can
only be read.

Note: The _ymouse and _xmouse coordinates are relative to the movie clip. Only
_root._ymouse and _root._xmouse return absolute positions.

Note: In the Flash Player, the y-axis is inverted—that is, positive values increase in the
“downward” direction rather than upward.

See also

“MovieClip._xmouse Property” on page 192

Using Help | Contents | Index Back 194

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 194

MovieClip._yscale Property
movieClip._yscale

Description

The _yscale property of movieClip represents the vertical scaling percentage of the movie
clip relative to its original size. This property can be read or written.

See also

“MovieClip._xscale Property” on page 193

NaN Global Property
NaN

Description

The NaN global property is a predefined variable with the value NaN (Not-a-Number), as
specified by the IEEE-754 standard. This property can only be read.

Example

trace(NaN);//prints NaN

var redFish = NaN;

trace(redFish);//prints NaN

See also

“IsNan() Global Function” on page 153, “Number.NaN Property” on page 197

newline Constant
newline

Description

The newline constant is used wherever a \n could be used in text to force a line break. It is
equivalent to the ASCII value of 10.

nextFrame() Global Function
nextFrame()

Description

The nextFrame() global function moves the playhead of the current timeline to the next
frame and stops it.

See also

“MovieClip.nextFrame() Method” on page 187, “prevFrame() Global Function” on page 203

Number() Global Function
Number(expression)

Using Help | Contents | Index Back 195

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 195

Description

The Number() global function converts expression into a number. Do not confuse this
global function with the Number object.

Parameters

Returns

A number representing the expression, or NaN if the expression cannot be converted into a
number.

Example

trace(Number(2 * 2));//prints 4

See also

“Number Object” on page 195, “parseFloat() Global Function” on page 202, “parseInt()
Global Function” on page 202, “String() Global Function” on page 214, “Boolean() Global
Function” on page 120

Number Object
Description

The Number object helps you work with numeric values. It is an object wrapper for primitive
numeric values.

The primary uses for the Number object are to access constant properties that represent the
largest and smallest representable numbers, positive and negative infinity, and the Not-a-
Number (NaN) value.

The properties of Number are properties of the object itself, not of individual Number objects.
You need to create an instance of type Number only when you wish to use its methods.

Constructor

new Number(value)

Parameters

Properties

expression A string, boolean, or other expression to convert into a num-
ber.

value The numeric value of the object being created.

MAX_VALUE See “Number.MAX_VALUE
Property” on page 196.

Constant representing the largest rep-
resentable number

MIN_VALUE See “Number.MIN_VALUE
Property” on page 196.

Constant representing the smallest
representable number.

Using Help | Contents | Index Back 196

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 196

Methods

Number.MAX_VALUE Property
Number.MAX_VALUE

Description

The MAX_VALUE property represents the maximum representable numeric value. It has value
of approximately 1.79e+308, though this may vary depending on platform. Values larger
than MAX_VALUE are represented as infinity (see “Number.POSITIVE_INFINITY Property” on
page 198 and “Number.NEGATIVE_INFINITY Property” on page 197). This property can
only be read.

Example

if (1000 * 100001 <= Number.MAX_VALUE)

trace("No overflow");//prints "No overflow"

else

trace("Overflow");

See also

“Number.MIN_VALUE Property” on page 196, “Number.POSITIVE_INFINITY Property” on
page 198, “Number.NEGATIVE_INFINITY Property” on page 197, “Infinity Global Property”
on page 152, “-Infinity Global Property” on page 152

Number.MIN_VALUE Property
Number.MIN_VALUE

NaN See “Number.NaN Property”
on page 197.

Constant representing the special
Not-a -Number value.

NEGATIVE_INFINITY See “Num-
ber.NEGATIVE_INFINITY Prop-
erty” on page 197.

Constant representing negative infin-
ity.

POSITIVE_INFINITY See “Num-
ber.POSITIVE_INFINITY Prop-
erty” on page 198.

Constant representing positive infin-
ity.

toString() See “Number.toString()
Method” on page 198.

Return a string representing the
object.

valueOf() See “Number.valueOf()
Method” on page 199.

Return the primitive value of the
object.

Using Help | Contents | Index Back 197

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 197

Description

The MIN_VALUE property represents the smallest positive representable numeric value. It is
the number closest to 0—not the most negative number that can be represented.
MIN_VALUE has a value of approximately 2.22e-308, though this may vary depending on
platform. Values smaller than MIN_VALUE (“underflow values”) are converted to 0.

Example

if (1/1000000000000000000000000<= Number.MAX_VALUE)

trace("No underflow");//prints "No underflow"

else

trace("Underflow");

See also

“Number.MAX_VALUE Property” on page 196

Number.NaN Property
Number.NaN

Description

The NaN property is a special value representing Not-A-Number. This value complies with
the IEEE-754 value for Not-A-Number. This property can only be read.

Example

var twoFish = 1;
if (twoFish < 2 || twoFish > 2)

twoFish = Number.NaN;

trace(twoFish);//prints "NaN"

Number.NEGATIVE_INFINITY Property
Number.NEGATIVE_INFINITY

Description

The NEGATIVE_INFINITY property is a special numeric value representing negative infinity.
Mathematically, this value behaves like infinity—for example, anything multiplied by
infinity is infinity, and anything divided by infinity is 0. This property can only be read.

Example

var IQ = -Number.MAX_VALUE*10;

if (IQ == Number.NEGATIVE_INFINITY)

trace("Really low");//prints "Really low"

else

trace("Not so low");

Using Help | Contents | Index Back 198

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 198

See also

“Number.POSITIVE_INFINITY Property” on page 198, “Infinity Global Property” on
page 152, “-Infinity Global Property” on page 152

Number.POSITIVE_INFINITY Property
Number.POSITIVE_INFINITY

Description

The POSITIVE_INFINITY property is a special numeric value representing infinity. This value
behaves mathematically like infinity—for example, anything multiplied by infinity is
infinity, and anything divided by infinity is 0. This property can only be read.

Example

var IQ = Number.MAX_VALUE*10;

if (IQ == Number.POSITIVE_INFINITY)

trace("Really high");//prints "Really high"

else

trace("Not so high");

See also

“Number.NEGATIVE_INFINITY Property” on page 197, “Infinity Global Property” on
page 152, “-Infinity Global Property” on page 152

Number.toString() Method
num.toString()

num.toString(radix)

Description

The toString() method returns a string representing num.

Parameters

Returns

A string representing num.

Example

var tenFish = new Number(10);

trace("Billy and Monica caught " + tenFish.toString() + " fish.");

//prints "Billy and Monica caught 10 fish."

See also

“Object.toString() Method” on page 200

radix (Optional) An integer between 2 and 36 specifying the base to use for
representing numeric values. Default is 10.

Using Help | Contents | Index Back 199

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 199

Number.valueOf() Method
num.valueOf()

Description

The valueOf() method returns the value of num as a primitive number.

Returns

The primitive value of num.

See also

“Object.valueOf() Method” on page 201

Object Class
Description

The Object class provides the primitive JavaScript object type. All JavaScript objects are
derived from the Object class. That is, all JavaScript objects have the methods and
properties defined for the Object class available to them. In C++ terminology, Object is the
base class that is inherited by all JavaScript objects.

In addition to using a constructor to create a new instance of the Object class, you can also
use the bracket syntax (e.g., newObject = { value1: 1, value2: 2}).

Constructor

new Object()

Parameters

None.

Properties

Methods

Object.constructor Property
obj.constuctor

constructor See “Object.constructor
Property” on page 199.

Reference to the function used to create an
object.

__proto__ See “Object.__proto__ Prop-
erty” on page 200.

Reference to an object’s prototype object.

toString() See “Object.toString() Method”
on page 200.

Returns a string representing the object.

valueOf() See “Object.valueOf() Method”
on page 201.

Returns the primitive value of the object.

Using Help | Contents | Index Back 200

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 200

Description

The constructor property is a reference to the prototype function used to create obj. The
value of this property is a reference to the function itself, not a string containing the
function's name. This property can be read or written.

Example

beret = new Object();

trace (beret.constructor == Object);//prints "true"

beret = {}

trace (beret.constructor == Object);//prints "true"

Object.__proto__ Property
obj.__proto__

Description

The __proto__ (double underscores) property is a reference to obj’s prototype object. This
property can be read or written.

The prototype object of the Object class, on the other hand, is used to pass properties and
methods to objects that inherit the Object class. Note that the __proto__ property and
prototype object are common to all scripting objects. Since all LiveMotion objects are
derived from the Object class, you can use the prototype object to add methods and
properties to all LiveMotion objects. These become global methods and properties. When
adding a global property this way, you are in essence creating a global variable.

Example

Object.prototype.newProp = "office";//create a true global variable

oval = new Date();

trace(oval.newProp); //prints "office"

trace(oval.__proto__); //prints "Date"

Object.toString() Method
obj.toString()

Description

The toString() method returns a string representing obj. Many objects override this
method in favor of their own implementation (for example, Date.toString()).

If an object has no string value and no user-defined toString() method, toString() returns
[object type], where type is the object type or the name of the constructor function that
created the object.

Returns

A string representing obj.

Using Help | Contents | Index Back 201

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 201

Example

function Cat(name,breed,color,sex) {

this.name=name

this.breed=breed

this.color=color

this.sex=sex
}

theCat = new Cat("Socks","Calico","chocolate","girl");

The following code creates catToString(), the function that will be used in place of the
default toString() method. This function generates a string containing each property, of
the form “property = value”.

function catToString() {

var ret = "Cat " + this.name + " is [";

for (var prop in this)

ret += " " + prop + " is " + this[prop] + ";"

return ret + "]"
}

The following code assigns the user-defined function to the object's toString() method:

Cat.prototype.toString = catToString;

With the preceding code in place, any time theCat is used in a string context, (for example,
trace(theCat.toString())) JavaScript automatically calls the catToString function, which
returns the following string:

Cat Socks is [name is Socks; breed is Calico; color is chocolate;
sex is girl;]

See also

“Array.toString() Method” on page 119, “Date.toString() Method” on page 145,
“Boolean.toString() Method” on page 121, “Number.toString() Method” on page 198,
“Object.valueOf() Method” on page 201

Object.valueOf() Method
obj.valueOf()

Description

The valueOf() method returns the primitive value of obj. If obj has no primitive value,
valueOf() returns the object itself. Note that you rarely need to invoke the valueOf()
method yourself. JavaScript automatically invokes it when encountering an object where
a primitive value is expected.

The following shows the object types for which the valueOf() method is most useful. Most
other objects have no primitive values.

Using Help | Contents | Index Back 202

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 202

• Number object type—valueOf() returns primitive numeric value associated with the
object.

• Boolean object type—valueOf() returns primitive boolean value associated with the
object.

• String object type—valueOf() returns string associated with the object.

You can create a valueOf() method to be called in place of the default valueOf() method.
Your function must take no arguments.

Returns

The primitive value of obj; if obj has no primitive value, valueOf() returns the object itself.

See also

“Boolean.valueOf() Method” on page 121, “MovieClip.valueOf() Method” on page 191,
“Number.valueOf() Method” on page 199, “Object.toString() Method” on page 200

parseFloat() Global Function
parseFloat(string)

Description

The parseFloat() global function parses string to find the first set of characters that can
be converted to a floating-point number and returns that number. If the function does not
encounter characters that it can convert to a number, it returns NaN. The function supports
exponential notation.

Parameters

Returns

A floating-point number, or NaN if no number was found.

Example

trace(parseFloat("2.12"));//prints 2.12

trace(parseFloat("a23"));//prints NaN

trace(parseFloat("25e10"));//prints 250000000000

See also

“Number() Global Function” on page 194, “parseInt() Global Function” on page 202

parseInt() Global Function
parseInt(string)

parseInt(string, base)

string The string from which to extract a floating-point number.

Using Help | Contents | Index Back 203

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 203

Description

The parseInt() global function parses string to find the first set of characters that can be
converted to an integer in the specified base and returns that integer. If the function does
not encounter characters that it can convert to an integer, it returns NaN.

Parameters

Returns

An integer in base 10, or NaN if no number was found.

Example

trace(parseInt("10"));//prints 10

trace(parseInt("10", 2));//prints 2 (decimal equivalent of binary 10)

trace(parseInt("0xFF"));//prints 255 (decimal equivalent of hex FF)

trace(parseInt("0377"));//prints 255 (decimal equivalent of octal
377)

See also

“Number() Global Function” on page 194, “parseFloat() Global Function” on page 202

play() Global Function
play()

Description

The play() global function moves the playhead of the current timeline forward.

See also

“gotoAndPlay() Global Function” on page 151, “MovieClip.play() Method” on page 187,
“stop() Global Function” on page 213

prevFrame() Global Function
prevFrame()

Description

The prevFrame() global function moves the playhead of the current timeline to the
previous frame and stops it there.

See also

“MovieClip.prevFrame() Method” on page 188, “nextFrame() Global Function” on page 194

string The string from which to extract an integer.

base (Optional) The base of the string to parse (from base 2 to base
36). If not supplied, base is determined by the format of
string.

Using Help | Contents | Index Back 204

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 204

_quality Global Property
_quality

Description

The _quality global property sets the level of rendering quality. It takes one of the
following strings (must be used with quotes):

• "LOW"—Graphics aren’t anti-aliased; bitmaps aren’t smoothed.

• "MEDIUM"—Graphics are anti-aliased using a 2x2 grid; bitmaps aren’t smoothed.

• "HIGH"—Graphics are anti-aliased using a 4x4 grid; bitmaps are smoothed if the movie
clip is static.

• "BEST"—Graphics are anti-aliased using a 4x4 grid; bitmaps are always smoothed.

removeMovieClip() Global Function
removeMovieClip(target)

Description

The removeMovieClip() global function deletes a movie clip. It can be used to delete movie
clips created with the duplicateMovieClip(), movieClip.duplicateMovieClip(),or
movieClip.attachMovie().

Parameters

See also

“duplicateMovieClip() Global Function” on page 146, “MovieClip.duplicateMovieClip()
Method” on page 179, “MovieClip.attachMovie() Method” on page 177,
“MovieClip.removeMovieClip() Method” on page 188

_root Global Property
_root

Description

_root is a special case of the MovieClip object. _root is a reference to the root movie clip in
the current player level, and as such it can be used in absolute paths to any object. This
property can only be read. It’s equivalent to saying _level4 if the script is also at _level4. It
is most often used to invoke methods and reference properties that are members of the
_root movie clip. For example:

_root.attachMovie(exportName, newName, depth)//attaches movie clip to
_root

_root._x = -150 //causes a horizontal offset of the entire SWF file

See also

“_leveln Global Property” on page 161, “MovieClip._parent Property” on page 187

target A path or a reference to an existing movie clip.

Using Help | Contents | Index Back 205

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 205

Selection Object
Description

The Selection object contains information about the text field that currently has focus. A
text field gets focus when the user clicks on the text field with the mouse. Since only one
text field can have focus at a time, the Selection object is static. No constructor is required.
In LiveMotion, text fields are created using the text field tool.

Using the Selection object you can control a user’s interaction with text fields and capture
text from the text fields. You can position or get the position of the cursor in a text field.

Properties

None.

Methods

Selection.getBeginIndex() Method
Selection.getBeginIndex()

Description

The getBeginIndex() method returns the index of the first character of the selection span.
It returns -1 if there is no currently selected field. The index is zero-based, where the first
position in the text field is 0. If no text is selected, the position of the cursor is returned.

Returns

Index of the beginning of the selection span. Returns -1 if there is no currently selected
field. If no text is selected, the position of the cursor is returned.

See also

“Selection.getEndIndex() Method” on page 206

getBeginIndex() See “Selection.getBeginIn-
dex() Method” on page 205.

Return the index of the beginning of the
selection span. Return -1 if there is no
currently selected field.

getCaretIndex() See “Selection.getCaretIn-
dex() Method” on page 206.

Return the index of the current caret (ver-
tical text cursor).

getEndIndex() See “Selection.getEndIn-
dex() Method” on page 206.

Return the index of the end of the current
selection. Returns -1 if there is no currently
selected field.

getFocus() See “Selection.getFocus()
Method” on page 206.

Return a string that is the absolute path to
the text field with the current focus.

setFocus() See “Selection.setFocus()
Method” on page 206.

Set the focus of the editable text field asso-
ciated with the variable in the argument.

setSelection() See “Selection.setSelection()
Method” on page 207.

Set the beginning and ending indices of
the selection span.

Using Help | Contents | Index Back 206

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 206

Selection.getCaretIndex() Method
Selection.getCaretIndex()

Description

The getCaretIndex() method returns the index of the current caret (vertical text cursor) in
the selection that currently has focus. If there is no current selection, -1 is returned.

Returns

Index of the current caret (vertical text cursor) in the selection that currently has focus. If
there is no current selection, -1 is returned.

Selection.getEndIndex() Method
Selection.getEndIndex()

Description

The getEndIndex() method returns the index of the character after the last character of the
selection span. It returns -1 if there is no currently selected field. The index is zero-based,
where the first position in the text field is 0. If no text is selected, the position of the cursor
is returned.

Returns

Index of the character after the last character of the selection span. Returns -1 if there is no
currently selected field. If no text is selected, the position of the cursor is returned.

See also

“Selection.getBeginIndex() Method” on page 205

Selection.getFocus() Method
Description

The getFocus() method returns a string that is the absolute path to the text field with the
current focus. If no text field is selected, null is returned. The result can be eval()’ed—i.e.,
eval(Selection.getFocus()) returns a reference to the text field.

Returns

A string that is the absolute path to the text field with the current focus. If no text field is
selected, null is returned.

See also

“Selection.setFocus() Method” on page 206

Selection.setFocus() Method
Selection.setFocus(textFieldPath)

Using Help | Contents | Index Back 207

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 207

Description

The setFocus() method sets the focus of the editable text field associated with the variable
in the argument.

Parameters

Returns

true if the focus was set, false otherwise.

Example

trace(Selection.setFocus("_root.display"));//prints "true" if there
is a text box whose var = display

See also

“Selection.getFocus() Method” on page 206

Selection.setSelection() Method
Selection.setSelection(start, end)

Description

The setSelection() method sets the beginning and ending indices of the selection span.
The indices are zero-based, where the first position in the text field is 0. The method has no
effect if there is no currently selected text field. If start = end, the cursor is set at that point
in the text.

Parameters

See also

“Selection.getBeginIndex() Method” on page 205, “Selection.getEndIndex() Method” on
page 206

Sound Object
Description

The Sound object is used to create an object that plays a sound. The object can be set and
controlled to provide the sounds for an individual movie clip, including _root, or for the
global timeline. All of the movie clip’s children are affected by a Sound object created for it.

textFieldPath A string representing the path to the text field that will gain
focus.

start The index of the beginning of the selection.

end The index of the character after the last character to be
included in the new selection.

Using Help | Contents | Index Back 208

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 208

Constructor

new Sound()

new Sound(target)

Parameters

Properties

None.

Methods

Sound.attachSound() Method
soundObj.attachSound(exportName)

target (Optional) A path or reference to a player level or an existing movie clip. If not
specified, the Sound object created controls all sounds in the global timeline. All
of the sound in the movie clip hierarchy from this point down will be controlled
by the new Sound object.

attachSound() See “Sound.attachSound()
Method” on page 208.

Add a new sound to a movie clip.

getPan() See “Sound.getPan() Method”
on page 209.

Get the current pan value of a sound.

getTransform() See “Sound.getTransform()
Method” on page 209.

Get the current panning transform value of
a sound.

getVolume() See “Sound.getVolume()
Method” on page 210.

Get the current volume of a sound.

setPan() See “Sound.setPan() Method”
on page 210.

Set the current pan value of a sound.

setTransform() See “Sound.setTransform()
Method” on page 210.

Set the current panning transform value of
a sound.

setVolume() See “Sound.setVolume()
Method” on page 211.

Set the current volume of a sound.

start() See “Sound.start() Method” on
page 212.

Play a sound.

stop() See “Sound.stop() Method” on
page 212.

Stop playing a sound or all sounds.

Using Help | Contents | Index Back 209

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 209

Description

The attachSound() method attaches a sound to a Sound object. exportName is the sharing
name of the sound. This is the sound file that was imported into LiveMotion, then assigned
a sharing name using the Export palette. Only one sound at a time can be attached to
soundObj.

Note: In Preview mode, the sound that is attached is the local version only. If the “Use
External Asset” feature is used from the Export palette, this will not be the same sound that
is actually used when the SWF file is executing in the Flash Player.

Parameters

See also

“MovieClip.attachMovie() Method” on page 177

Sound.getPan() Method
soundObj.getPan()

Description

The getPan() method gets the current pan value of the sound. This value was set by the
last call to setPan(). The pan value is used to implement the balance function between
audio channels.

Returns

The pan value of the sound (a number in the range of -100 to 100).

See also

“Sound.setPan() Method” on page 210

Sound.getTransform() Method
soundObj.getTransform()

Description

The getTransform() method returns the current panning transform values of a Sound
object. The panning transform values are similar to the pan value, but they let you specify
the relative amounts of right channel sound to be included in the left speaker, and vice
versa.

Returns

An object of type Object with the following properties:

• ll— the percentage of the left channel to play in the left speaker (an integer value in
the range of 0 to 100).

exportName The sharing name of the sound to attach. This name was
assigned to the sound using the Export palette.

Using Help | Contents | Index Back 210

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 210

• lr—the percentage of the left channel to play in the right speaker (an integer value in the range of 0 to

100).

• rl—the percentage of the right channel to play in the left speaker (an integer value in the range of 0 to

100).

• rr—the percentage of the right channel to play in the right speaker (an integer value in
the range of 0 to 100).

See also

“Sound.setTransform() Method” on page 210, “Object Class” on page 199

Sound.getVolume() Method
soundObj.getVolume()

Description

The getVolume() method gets the current volume of a sound. This is the volume set by the
last setVolume() call. Values are from 0 - 100.

Returns

The volume of the sound (an integer value in the range from 0 - 100).

See also

“Sound.setVolume() Method” on page 211

Sound.setPan() Method
soundObj.setPan(pan)

Description

The setPan() method sets the current pan value of a Sound object. The pan value is used to
implement the balance function between audio channels. A value of -100 routes all sound
through the left channel only; a value of 100 routes all sound through the right channel.
Values in between reflect the range between these two extremes, with a value of 0
indicating equal balance between the two channels. Default value is 0.

Parameters

See also

“Sound.getPan() Method” on page 209

Sound.setTransform() Method
soundObj.setTransform(transform)

pan The pan value of the sound (a number in the range of -100 to 100).

Using Help | Contents | Index Back 211

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 211

Description

The setTransform() method sets the current panning transform values of a Sound object.
The panning transform values are similar to the pan value, but they let you specify the
relative amounts of right channel sound to be included in the left speaker, and vice versa.
The panning transform values are passed into the setTransform() method by instantiating
an object of type Object and setting the following four properties:

• ll— the percentage of the left channel to play in the left speaker (an integer value in
the range of 0 to 100);

• lr—the percentage of the left channel to play in the right speaker (an integer value in the range of 0 to

100);

• rl—the percentage of the right channel to play in the left speaker (an integer value in the range of 0 to

100);

• rr—the percentage of the right channel to play in the right speaker (an integer value in
the range of 0 to 100).

An ll value of, for example, 50% indicates that 50% of the left channel content should be
played through the left speaker.

Parameters

Example

waveringVoice = new Object();

voice.ll = 50;

voice.lr = 50;

voice.rl = 50;

voice.rr = 50;

soundObj.setTransform(waveringVoice);

See also

“Sound.getTransform() Method” on page 209, “Object Class” on page 199

Sound.setVolume() Method
soundObj.setVolume(volume)

Description

The setVolume() method sets the current volume of a sound.

Parameters

transform An object with ll, lr, rl, and rr properties.

volume The volume of the sound (an integer in the range of 0 - 100).

Using Help | Contents | Index Back 212

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 212

See also

“Sound.getVolume() Method” on page 210

Sound.start() Method
soundObj.start(offset, loops)

Description

The start() method plays the sound attached to soundObj.

Parameters

See also

“Sound.stop() Method” on page 212

Sound.stop() Method
soundObj.stop()

soundObj.stop(exportName)

Description

The stop() method stops playing a sound or all sounds. All sounds controlled by soundObj
are stopped if no argument is provided.

Parameters

See also

“Sound.start() Method” on page 212

_soundbuftime Global Property
_soundbuftime

Description

The _soundbuftime global property is an integer indicating the number of seconds of
streaming sound to load before playing starts. Default value is 5 seconds. This property
can be read or written.

offset The number of seconds to wait before playing the sound. Default value is 0.

loops The number of times to loop the sound before stopping. Default value is 1.

exportName (Optional) The sharing name of the sound to stop. This name
was assigned to the sound using the Export palette.

Using Help | Contents | Index Back 213

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 213

startDrag() Global Function
startDrag(target)

startDrag(target, lockCenter)

startDrag(target, lockCenter, left, top, right, bottom)

Description

The startDrag() global function causes target to visually follow the mouse cursor. Use the
stopDrag() global function to halt dragging.

Parameters

See also

“stopDrag() Global Function” on page 214, “MovieClip.startDrag() Method” on page 188

stop() Global Function
stop()

Description

The stop() global function stops playing the timeline of the current movie clip.

See also

“play() Global Function” on page 203

stopAllSounds() Global Function
stopAllSounds()

Description

The stopAllSounds() global function stops all sounds currently playing in the composition.
It doesn’t stop the playhead and it doesn’t stop new sounds from starting.

target A path or reference to the existing movie clip to drag.

lockCenter (Optional) A boolean indicating whether the draggable tar-
get should be centered under the mouse cursor (true) or
dragged relative to the mouse cursor’s location when clicked
(false). Default is false.

left (Optional) The x-coordinate boundary to the left of which
target cannot be dragged.

top (Optional) The y-coordinate boundary above which target
cannot be dragged.

right (Optional) The x-coordinate boundary to the right of which
target cannot be dragged.

bottom (Optional) The y-coordinate boundary below which target
cannot be dragged.

Using Help | Contents | Index Back 214

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 214

See also

“Sound.stop() Method” on page 212

stopDrag() Global Function
stopDrag()

Description

The stopDrag() global function stops the dragging of the currently draggable object.

See also

“startDrag() Global Function” on page 213, “MovieClip.stopDrag() Method” on page 189

String() Global Function
String(value)

Description

The String() global function returns a primitive string representation of value. Do not
confuse this global function with the String object.

Parameters

Returns

• If value is a boolean, returns true or false.

• If value is a string, returns the string.

• If value is a number, returns a string representation of the number.

• If value is a MovieClip object, returns the absolute path.

• If value is an object, returns a string representation of the object.

• If value is undefined, returns an empty string.

See also

“String Object” on page 214, “Object.toString() Method” on page 200, “Boolean() Global
Function” on page 120, “Number() Global Function” on page 194

String Object
Description

The String object is a wrapper around the string primitive data type. Do not confuse a
string literal with the String object. For example, the following code creates the string
literal s1 and also the String object s2:

s1 = "foo" // creates a string literal value

s2 = new String("foo") // creates a String object

value A number, string, variable, or boolean to convert to a string.

Using Help | Contents | Index Back 215

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 215

trace(s1.valueOf());//prints "foo"

trace(s2.valueOf());//prints "foo"

You can call any of the methods of the String object on a string literal value— JavaScript
automatically converts the string literal to a temporary String object, calls the method,
then discards the temporary String object. You can also use the length property with a
string literal.

Constructor

new String(value)

Parameters

Properties

Methods

value The initial value of the string object, or a number, variable, or boolean to convert
to a string. If this parameter is not supplied, the string will be set to "" (the empty
string).

length See “String.length Prop-
erty” on page 219.

The length of the string.

charAt() See “String.charAt()
Method” on page 216.

Return the character at the specified index.

charCodeAt() See “String.charCodeAt()
Method” on page 217.

Return the ASCII value of the character at the
specified index.

concat() See “String.concat()
Method” on page 217.

Concatenate the text of two or more strings and
return the new string.

fromCharCode(
)

See “String.fromChar-
Code() Method” on
page 218.

Return a string created from the characters spec-
ified in the argument list.

indexOf() See “String.indexOf()
Method” on page 218.

Return the index of the first occurrence of the
specified value in the string, or -1 if not found.

lastIndexOf() See “String.lastIndexOf()
Method” on page 219.

Return the index of the last occurrence of the
specified value in the string, or -1 if not found.

splice() See “String.slice() Method”
on page 220.

Return a string consisting of the substring speci-
fied in the argument list.

split() See “String.split() Method”
on page 220.

Split a string into an array of substrings.

substr() See “String.substr()
Method” on page 221.

Return the specified number of characters in a
string beginning at the specified location.

Using Help | Contents | Index Back 216

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 216

String.charAt() Method
stringObj.charAt(index)

Description

The charAt() method returns the specified character from the string. Characters in a string
are indexed from left to right. The index of the first character is 0, and the index of the last
character is the length of string minus 1 (zero-based indexing). If the index is out of range,
JavaScript returns an empty string.

Parameters

Returns

A string consisting of one character or an empty string (if the index is out of range).

Example

The following example displays characters at sequential locations in the string “Billy”:

var anyString="Billy";

trace("The character at index 0 is " + anyString.charAt(0));

trace("The character at index 1 is " + anyString.charAt(1));

trace("The character at index 2 is " + anyString.charAt(2));

trace("The character at index 3 is " + anyString.charAt(3));

trace("The character at index 4 is " + anyString.charAt(4));

//prints

//The character at index 0 is B

//The character at index 1 is i

//The character at index 2 is l

//The character at index 3 is l

//The character at index 4 is y

See also

“String.indexOf() Method” on page 218, “String.lastIndexOf() Method” on page 219

substring() See “String.substring()
Method” on page 222.

Return the characters between the two indices
into the string.

toLowerCase() See “String.toLowerCase()
Method” on page 223.

Convert the string to lowercase and return.

toUpperCase() See “String.toUpperCase()
Method” on page 223.

Convert the string to uppercase and return.

index An integer between 0 and the length of the string minus 1
(zero-based indexing).

Using Help | Contents | Index Back 217

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 217

String.charCodeAt() Method
stringObj.charCodeAt(index)

Description

The charCodeAt() method returns the ASCII value of the character at the given index.

Parameters

Returns

The ASCII value of the character.

Example

trace("ICE".charCodeAt(0));// prints 73 - the ASCII value of "I"

trace("ICE".charCodeAt());// prints 73 - the ASCII value of "I"

trace("ICE".charCodeAt(1));// prints 67 - the ASCII value of "C"

trace("ICE".charCodeAt(2));// prints 69 - the ASCII value of "E"

String.concat() Method
stringObj.concat(value1, value2, ...valuen)

Description

The concat() method concatenates the text of one or more strings to stringObj and
returns the new string. If necessary, it first converts a given value to a string. The original
string in not affected.

Parameters

Returns

The concatenated string.

Example

The following example combines two strings into a new string.

s1="Billy ";

s2="and ";

s3="Monica are fishing.";

trace(s1.concat(s2,s3)); // prints "Billy and Monica are fishing."

index An integer between 0 and the length of the string minus 1 (zero-based
indexing). Default value is 0.

value1, value2, ...valuen The values to concatenate to stringObj.

Using Help | Contents | Index Back 218

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 218

String.fromCharCode() Method
String.fromCharCode(value1, value2, ...valuen)

Description

The fromCharCode() method returns a string created by using the specified sequence of
ASCII values. Because fromCharCode() is a static method of String, you always use it as
String.fromCharCode(), rather than as a method of a String object you create.

Parameters

Returns

A string consisting of the characters provided as ASCII values.

Example

trace(String.fromCharCode(66,105,108,108,121)); //Returns "Billy"

String.indexOf() Method
stringObj.indexOf(searchValue, fromIndex)

Description

The indexOf() method returns the index within the string of the first occurrence of the
specified value, starting the search at fromIndex if provided. The method returns -1 if the
value is not found.

Characters in a string are indexed from left to right. The index of the first character is 0, and
the index of the last character is length of the string minus 1 (zero-based indexing).

Parameters

Returns

The position (zero-based) within the string where the first occurrence of searchValue was
found, or -1 if it was not found.

Example

trace("Favorite beret".indexOf("Favorite")); // prints 0

trace("Favorite beret".indexOf("Hat")); // prints -1

trace("Favorite beret".indexOf("beret",0)); // prints 9

trace("Favorite beret".indexOf("beret",9)); // prints 9

value1, value2, ...valuen A sequence of ASCII values.

searchValue The string value for which to search.

fromIndex (Optional) The location within the current string from which to start the
search. Can be any integer between 0 and the length of the string minus
1 (zero-based indexing). If this argument is not supplied, the default value
is 0.

Using Help | Contents | Index Back 219

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 219

See also

“String.charAt() Method” on page 216, “String.lastIndexOf() Method” on page 219

String.lastIndexOf() Method
stringObj.lastIndexOf(searchValue, fromIndex)

Description

The lastIndexOf() method returns the index within the string of the last occurrence of the
specified value, or -1 if not found. The string is searched backward, starting at fromIndex.

Characters in a string are indexed from left to right. The index of the first character is 0, and
the index of the last character is the length of the string minus 1.

Parameters

Returns

The position (zero-based) within the string where the last occurrence of searchValue was
found, or -1 if it was not found.

Example

trace("Billy".lastIndexOf("l")); // prints 3

trace("Billy".lastIndexOf("l",2)); // prints 2

trace("Billy".lastIndexOf("x")); // prints -1

See also

“String.charAt() Method” on page 216, “String.indexOf() Method” on page 218

String.length Property
stringObj.length

Description

The length property is the length of the string. An empty ("") string has a length of 0. This
property can only be read.

Example

var x="Billy";

trace("Length is " + x.length);//prints "Length is 5"

searchValue A string representing the value to search for.

fromIndex (Optional) The location within the current string from which to start
the search. Can be any integer between 0 and the length of the string
minus 1 (zero-based indexing). If this argument is not supplied, the
default value is 0.

Using Help | Contents | Index Back 220

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 220

String.slice() Method
stringObj.slice(startSlice, endSlice)

Description

The slice() method extracts a section of the string and returns the new string. slice()
extracts up to but not including endSlice. Indexing is zero-based. For example, slice(1,4)
extracts the second character through the fourth character (characters indexed 1, 2, and
3). The original string is unchanged.

As a negative index, startSlice or endSlice indicates an offset from the end of the string,
where the last character is -1, the second is -2, etc. For example, slice(2,-1) extracts the
third character through the second to last character in the string.

Parameters

Returns

A substring of characters from stringObj, starting at startSlice and ending with endSlice
minus 1.

Example

str1="Billy and Monica are ice skating.";

str2=str1.slice(10,-5);

trace(str2); //Prints "Monica are ice ska"

See also

“String.substring() Method” on page 222, “String.substr() Method” on page 221

String.split() Method
stringObj.split(delimiter)

Description

The split() method splits the string into a group of substrings, places those strings into
an array, and returns the array. The substrings are created by breaking the original string at
points that match delimiter. When found, delimiter is removed from the string and the
resulting substring is added to the array.

Parameters

startSlice The zero-based index at which to begin extraction.

endSlice (Optional) The zero-based index at which to end extraction. If omitted, slice
extracts to the end of the string.

delimiter (Optional) The character to use for delimiting. The delimiter is
treated as a string. If omitted, the array returned contains one
element consisting of the entire string.

Using Help | Contents | Index Back 221

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 221

Returns

An array whose elements are the substrings.

Example

myString = "Hello Billy. Let’s go fishing.";

splits = myString.split(" ");

for(i=0; (splits[i] != "fishing."); ++i)

trace(splits[i]);

trace(splits[i]);

//Displays

//Hello

//Billy.

//Let’s

//go

//fishing.

See also

“String.charAt() Method” on page 216, “String.lastIndexOf() Method” on page 219,
“String.indexOf() Method” on page 218, “Array.join() Method” on page 112

String.substr() Method
stringObj.substr(start, length)

Description

The substr() method returns the characters in the string beginning at start and
continuing through the specified number of characters. start is a character index. The
index of the first character is 0, and the index of the last character is the length of the string
minus 1 (zero-based indexing). substr() begins extracting characters at start and collects
length number of characters. The original string is unchanged.

If start is negative, substr() uses it as a character index from the end of the string
(stringObj.length plus start). If length is omitted, start extracts characters to the end of
the string.

Parameters

Returns

A string containing the extracted characters.

Example

str = "phonecall"

trace("(1,2): " + str.substr(1,2));

start The location at which to begin extracting characters.

length (Optional) The number of characters to extract.

Using Help | Contents | Index Back 222

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 222

trace("(-2,2): " + str.substr(-2,2));

trace("(1): " + str.substr(1));

trace("(20, 2): " + str.substr(20,2));

//prints

//(1,2): ho

//(-2,2): ll

//(1): honecall

//(20, 2):

See also

“String.substring() Method” on page 222, “String.slice() Method” on page 220

String.substring() Method
stringObj.substring(indexA, indexB)

Description

The substring() method returns a substring of the string by extracting characters from
indexA up to but not including indexB. The original string is unchanged. Specifically:

• If indexA is less than 0, indexA is treated as if it were 0.

• If indexB is less than 0, indexB is treated as if it were 0.

• If indexB is greater than or equal tostringObj.length, characters are extracted to the end
of the string.

• If indexA equals indexB, substring() returns an empty string.

• If indexB is omitted, characters are extracted to the end of the string.

• If indexB is less than indexA, the two indices are automatically re-ordered.

Parameters

Returns

A substring of characters from stringObj.

Example

var str="trolling";

// Prints "tro"

trace(str.substring(0,3));

trace(str.substring(3,0));//automatic re-ordering

// Prints "lin"

trace(str.substring(4,7));

indexA An integer between 0 and the length of the string minus 1 (zero-based indexing).

indexB (Optional) An integer between 0 and the length of the string minus 1 (zero-based
indexing).

Using Help | Contents | Index Back 223

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 223

trace(str.substring(7,4));

// Prints "trollin"

trace(str.substring(0,7));

// Prints "trolling"

trace(str.substring(0,8));

trace(str.substring(0,10));

See also

“String.substr() Method” on page 221, “String.slice() Method” on page 220

String.toLowerCase() Method
stringObj.toLowerCase()

Description

The toLowerCase() method returns stringObj converted to lower case without affecting the
value of the string itself.

Returns

A lower case string.

Example

The following example prints the lower case string “white house”:

var upperCase="WHITE HOUSE";

trace(upperCase.toLowerCase())//prints "white house"

See also

“String.toUpperCase() Method” on page 223

String.toUpperCase() Method
stringObj.toUpperCase()

Description

The toUpperCase() method returns stringObj converted to upper case without affecting
the value of the string itself.

Returns

An upper case string.

Example

The following example prints the string “WHITE HOUSE”:

var lowerCase="white house";

trace(lowerCase.toUpperCase());//prints "WHITE HOUSE"

See also

“String.toLowerCase() Method” on page 223

Using Help | Contents | Index Back 224

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 224

targetPath() Global Function
targetPath(movieClip)

Description

The targetPath() global function returns the absolute path to movieClip as a string in dot
notation. To get the path in slash notation, use the _target property of MovieClip.

Parameters

Returns

A string representing the absolute path to movieClip.

Example

targetPath(oval);

See also

“MovieClip._target Property” on page 190

Text Field Properties
variableName.scroll

variableName.maxscroll

Description

The scroll and maxscroll text field properties give you control over the display of text in a
text field. variableName is the name of the variable (var=) associated with the text field.

The scroll text field property allows you to control the display of information in a text field
by moving the text in the text field to a specific position. It is set to the line number of the
line that you want to be the topmost visible line in the text field. It is used in conjunction
with the maxscroll property. This property can be read or written.

The maxscroll text field property specifies the maximum value allowed for the scroll text
field property. It serves as a value that you can use to ensure that the scroll property is not
assigned a value larger than the number of the last line in the text field. This property can
only be read.

trace() Global Function
trace(expression)

Description

The trace() global function evaluates expression and outputs the results as a string to the
Script Console window followed by a newline character. Used for debugging.

movieClip A reference to the movie clip for which the path is requested.

Using Help | Contents | Index Back 225

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 225

trace() is only useful from within LiveMotion’s Preview mode. You can display similar
results to a text field of the executing SWF file using the following code, where display is
the variable (var=) name of your text field:

_root.display = expression;

Parameters

Example

trace() is used extensively for output in the examples of this reference chapter.

trace(this);//prints MovieClip (primitive type)

trace(2 * 2);//prints 4

trace("Monica and Billy were here.");//prints "Monica and Billy were
here."

unescape() Global Function
unescape(stringExpression)

Description

The unescape() global function translates the encoded string stringExpression into a
regular string. In stringExpression, characters that required encoding were replaced with
the format %xx, where xx is the hexadecimal value of the character. This type of encoding is
basically URL encoding except that spaces are replaced with %20 instead of a + sign. Use
the escape() global function to encode strings.

Parameters

Returns

A regular string version of stringExpression.

Example

//prints "Billy went fishing!#?!"

trace(unescape("Billy%20went%20fishing%21%24%23%21"));

See also

“escape() Global Function” on page 147

unloadMovie() Global Function
unloadMovie(target)

expression The expression to evaluate. It needs to result in a string, or
something that can be converted to a string.

stringExpression A string encoded with the escape() global function.

Using Help | Contents | Index Back 226

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 226

Description

The unloadMovie() global function unloads the SWF file from target that was previously
loaded using the loadMovie() global function, the loadMovieNum() global function, or the
movieClip.loadMovie() method.

When a SWF file is unloaded from an existing movie clip, the contents of the movie clip are
unloaded, but the movie clip handlers are not. These include onEnterFrame, onLoad,
onUnload, onData, onMouseDown, onMouseUp, onMouseMove, onKeyDown, and
onKeyUp. Everything else—including button handlers, state scripts, and objects—are
removed from the movie clip “shell.” This movie clip shell concept is important to keep in
mind because it means that, when using loadMovie() and unloadMovie(), a movie clip
instance is never really removed from the composition. Movie clip content is simply
moved in and out of the shell with loadMovie() and unloadMovie().

Parameters

See also

“loadMovie() Global Function” on page 162, “loadMovieNum() Global Function” on
page 163, “unloadMovieNum() Global Function” on page 226, “MovieClip.loadMovie()
Method” on page 185, “MovieClip.unloadMovie() Method” on page 191

unloadMovieNum() Global Function
unloadMovieNum(number)

Description

Same as unloadMovie() except that a number is used to specify the player level. Therefore,
it can only be used to unload SWF files previously loaded using the loadMovie() global
function or the loadMovieNum() global function.

Parameters

See also

“loadMovie() Global Function” on page 162, “loadMovieNum() Global Function” on
page 163, “unloadMovie() Global Function” on page 225, “MovieClip.loadMovie() Method”
on page 185, “MovieClip.unloadMovie() Method” on page 191

updateAfterEvent() Global Function
updateAfterEvent()

target A path or reference to a level of the player or an existing movie clip.

number A non-negative integer specifying the level of the player con-
taining the SWF file to unload.

Using Help | Contents | Index Back 227

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 227

Description

The updateAfterEvent() global function is used to update the display when one of the
following events occurs: onMouseMove, onMouseDown, onMouseUp, onKeyDown,
onKeyUp. Place this function in the appropriate event handler to cause refresh to occur.

XML Object
Description

The XML object enables you to load, parse, send, build, and manipulate eXtensible Markup
Language (XML) document trees. Unlike HTML, which uses a defined set of tags, XML
allows you to define your own document tags. LiveMotion allows you to either build an
XML document from scratch or read in and modify an existing XML document.

The following shows three levels of child nodes (the document itself is the parent):

<fish>//level 1 child node

<type>Bass</type>//"type" tag is level 2 child node; "Bass" is
level 3

</fish>

For example, the following creates an XML document:

xmlDocument = new XML("<fish><type>Bass</type></fish>");

The text can then be accessed as follows:

//prints "Bass"

trace(xmlDocument.firstChild.firstChild.firstChild.nodeValue);

Constructor

new XML()

new XML(source)

Parameters

Properties

source (Optional) Source XML document. If not provided, the XML object will contain a
new, empty XML document.

attributes See “XML.attributes Prop-
erty” on page 229.

Object whose properties store the attributes
defined by the node.

childNodes See “XML.childNodes Prop-
erty” on page 230.

Array of child nodes of node.

contentType See “XML.contentType Prop-
erty” on page 231.

MIME content type.

Using Help | Contents | Index Back 228

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 228

Methods

docTypeDecl See “XML.docTypeDecl Prop-
erty” on page 232.

DOCTYPE declaration of the XML document.

firstChild See “XML.firstChild Property”
on page 233.

First child of the node, null if there are no chil-
dren.

ignoreWhite See “XML.ignoreWhite Prop-
erty” on page 234.

Whether to ignore whitespace during XML
parsing.

lastChild See “XML.lastChild Property”
on page 234.

Last child of the node, null if there are no
children.

loaded See “XML.loaded Property”
on page 235.

true if the load() or sendAndLoad() operation
has completed.

nextSibling See “XML.nextSibling Prop-
erty” on page 236.

Next sibling of the node, null if this node is
the last node.

nodeName See “XML.nodeName Prop-
erty” on page 236.

Tag name of the node. null if this node is a
text node.

nodeType See “XML.nodeType Prop-
erty” on page 236.

Type of the node. Either 1 if the node is an
element node, or 3 if the node is a text node.

nodeValue See “XML.nodeValue Prop-
erty” on page 236.

Text contained in the node. null if the node is
not a text node.

parentNode See “XML.parentNode Prop-
erty” on page 238.

Parent node of the node. null if the node is at
the top of the hierarchy.

previousS-
ibling

See “XML.previousSibling
Property” on page 239.

Previous sibling of the node, null if the node
is the first node.

status See “XML.status Property” on
page 240.

Whether there was an error parsing the XML
document. 0 indicates no errors.

xmlDecl See “XML.xmlDecl Property”
on page 242.

DOCTYPE declaration of the XML document.

appendChild() See “XML.appendChild()
Method” on page 229.

Append a child to the node.

cloneNode() See “XML.cloneNode()
Method” on page 230.

Clone the node.

createElement() See “XML.createElement()
Method” on page 231.

Create an XML element node.

createTextNode() See “XML.createTextNode()
Method” on page 232.

Create an XML text node.

hasChildNodes() See “XML.hasChildNodes()
Method” on page 233.

Return an indication whether the node
has children.

insertBefore() See “XML.insertBefore()
Method” on page 234.

Insert a child node before another child
node.

Using Help | Contents | Index Back 229

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 229

Event Handlers

XML.appendChild() Method
node.appendChild(childNode)

Description

The appendChild() method appends an existing XML node to node as its last child.

Parameters

See also

“XML.createElement() Method” on page 231, “XML.createTextNode() Method” on
page 232, “XML.cloneNode() Method” on page 230, “XML.insertBefore() Method” on
page 234

XML.attributes Property
node.attributes

Description

The attributes property stores the names and values of attributes defined by node. This
property can be read or written.

load() See “XML.load() Method” on
page 235.

Load and parse an XML document from
the given URL.

parseXML() See “XML.parseXML()
Method” on page 238.

Parse the given text as an XML document.

removeNode() See “XML.removeNode()
Method” on page 239.

Delete the node and all of its children
from the containing document.

send() See “XML.send() Method” on
page 240.

Convert the XML document into a string
and send it to the given URL.

sendAndLoad() See “XML.sendAndLoad()
Method” on page 240.

Convert the XML document into a string
and send it to the given URL. The receiv-
ing application is to reply with an XML
document.

toString() See “XML.toString()
Method” on page 241.

Convert the XML object into a string.

onData See “XML.onData() Event
Handler” on page 237.

Indicates that the XML document parsing
can begin.

onLoad See “XML.onLoad() Event
Handler” on page 237.

Indicates that the load of an XML docu-
ment completed successfully.

childNode An existing XML node to append to node as a child.

Using Help | Contents | Index Back 230

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 230

For example, in the following line of code, name is an attribute and value is the value of that
attribute:

<testtag name=\"value\">Bass</testtag>

See also

“XML.nodeType Property” on page 236

XML.childNodes Property
node.childNodes[n]

Description

The childNodes property holds an array of child nodes of node. Each element n in the array is
a reference to a child node. Use the methods appendChild(), insertBefore(), and
removeNode() to manipulate child nodes. This property can only be read.

Example

xmlDocument = new XML("<fish><type>Bass</type><color>grey</color></
fish>");

trace(xmlDocument.childNodes[0].childNodes[0].nodeValue);//prints
"type"

trace(xmlDocument.childNodes[0].childNodes[1].nodeValue);//prints
"color"

See also

“XML.firstChild Property” on page 233, “XML.hasChildNodes() Method” on page 233,
“XML.lastChild Property” on page 234, “XML.nextSibling Property” on page 236,
“XML.previousSibling Property” on page 239, “XML.appendChild() Method” on page 229,
“XML.insertBefore() Method” on page 234, “XML.removeNode() Method” on page 239

XML.cloneNode() Method
node.cloneNode(deep)

Description

The cloneNode() method clones node and, optionally, all of its children.

Parameters

Returns

The cloned node and, if deep is true, all of its children.

Example

xmlDocument = new XML("<fish><type>Bass</type></fish>");

deep A boolean indicating whether a deep clone (all of the node’s children as well as
node) should be performed. If true, a deep clone is performed. If false, only
node is cloned.

Using Help | Contents | Index Back 231

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 231

newDocument = new XML();

node = xmlDocument.firstChild.cloneNode(true);

newDocument.appendChild(node);

trace(newDocument.firstChild.nodeValue);//prints "fish"

See also

“XML.appendChild() Method” on page 229, “XML.createElement() Method” on page 231,
“XML.createTextNode() Method” on page 232, “XML.insertBefore() Method” on page 234

XML.contentType Property
root.contentType

Description

The contentType property holds the MIME content type. The MIME type is sent to the server
when either the send() or sendAndLoad() methods are used. Only available on the root
node of the document. This property can be read or written. The default is application/x-
www-form-urlencoded.

See also

“XML.send() Method” on page 240, “XML.sendAndLoad() Method” on page 240

XML.createElement() Method
root.createElement(tagName)

Description

The createElement() method creates a new element, or tag, node (not a text node). Only
available on the root node of the document. The new node has no parent and no children.
Note that the new node that is returned is not appended to root. To do that, you must use
appendChild().

As an example of a tag node, examine the line:

<type>Bass</type>

type is a tag node, whereas Bass is the associated text node.

Parameters

Returns

The new tag node.

Example

xmlDocument = new XML();

node = xmlDocument.createElement("fish");

xmlDocument.appendChild(node);

tagName The tag name of the node to create.

Using Help | Contents | Index Back 232

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 232

trace(xmlDocument.firstChild.nodeValue);//prints "fish"

See also

“XML.appendChild() Method” on page 229, “XML.cloneNode() Method” on page 230,
“XML.createTextNode() Method” on page 232, “XML.insertBefore() Method” on page 234,

XML.createTextNode() Method
root.createTextNode(text)

Description

The createTextNode() method creates a text node (as opposed to an element, or tag,
node). Only available on the root node of the document. The new node has no parent and
no children. Note that the new node that is returned is not appended to root. To do that,
you must use appendChild().

As an example of a text node, examine the line:

<type>Bass</type>

type is a tag node, whereas Bass is the associated text node.

Parameters

Returns

The new text node.

Example

xmlDocument = new XML();

node = xmlDocument.createElement("fish");

xmlDocument.appendChild(node);

textString = xmlDocument.createTextNode("Bass");

xmlDocument.firstChild.appendChild(textString);

trace(xmlDocument.firstChild.nodeValue);//prints "fish"

trace(xmlDocument.firstChild.firstChild.nodeValue);//prints "Bass"

See also

“XML.appendChild() Method” on page 229, “XML.cloneNode() Method” on page 230,
“XML.createElement() Method” on page 231, “XML.insertBefore() Method” on page 234

XML.docTypeDecl Property
root.docTypeDecl

text The text of the node to create.

Using Help | Contents | Index Back 233

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 233

Description

The docTypeDecl property specifies the DOCTYPE declaration of the XML document. If
there is no DOCTYPE, then this property is undefined. Only available on the root node of
the document. This property can be read or written.

Example

xmlDocument = new XML("<fish><type>Bass</type><color>grey</color></
fish>");

xmlDocument.docTypeDecl = "<!DOCTYPE salutation SYSTEM \"hello.dtd\">";

trace(xmlDocument.docTypeDecl);

//prints "<!DOCTYPE salutation SYSTEM "hello.dtd">"

See also

“XML.xmlDecl Property” on page 242

XML.firstChild Property
node.firstChild

Description

The firstChild property specifies the first child of node, or null if there are no children.
This property can only be read.

Example

xmlDocument = new XML("<fish><type>Bass</type></fish>");

trace(xmlDocument.firstChild.nodeValue);//prints "fish"

See also

“XML.childNodes Property” on page 230, “XML.lastChild Property” on page 234,
“XML.nextSibling Property” on page 236, “XML.previousSibling Property” on page 239

XML.hasChildNodes() Method
node.hasChildNodes()

Description

The hasChildNodes() method returns an indication of whether node has children.

Returns

true if node has children; false otherwise.

Example

xmlDocument = new XML("<fish><type>Bass</type></fish>");

if (xmlDocument.hasChildNodes())

trace("yes");//prints "yes"

else

 trace("no");

Using Help | Contents | Index Back 234

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 234

See also

“XML.childNodes Property” on page 230

XML.ignoreWhite Property
root.ignoreWhite

Description

The ignoreWhite property stores a boolean that indicates whether to ignore whitespace
during XML parsing. Only available on the root node of the document. The default is false.
This property can only be read.

Note: Previous to release 41of the Netscape Flash Player plug-in and release 42 of the
Internet Explorer Flash Player plug-in, the Flash 5 Player treated whitespace (carriage
returns, tabs, spaces) as nodes. The ignoreWhite property is supported in later releases. If
your XML code needs to run on earlier versions of the Flash 5 Player, you will need to
include code that strips out whitespace from incoming XML documents.

temp = new Boolean(true);

trace(temp.valueOf());//prints "true"

xmlDocument = new XML("<fish><type>Bass</type></fish>");

temp = xmlDocument.ignoreWhite;

trace(temp.valueOf());//prints "false"

XML.insertBefore() Method
node.insertBefore(newChild, insertBeforeChild)

Description

The insertBefore() method inserts a new child node before an existing child node in the
hierarchy.

Parameters

See also

“XML.appendChild() Method” on page 229

XML.lastChild Property
node.lastChild

Description

The lastChild property holds the last child of node, or null if there are no children.It is
equivalent to childNodes[childNodes.length-1]. This property can only be read.

newChild An existing XML node to add as a child to node before insertBefor-
eChild in the hierarchy.

insertBeforeChild The child to insert newChild before in node’s child list.

Using Help | Contents | Index Back 235

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 235

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");

trace(xmlDocument.lastChild.nodeValue);//prints "color2"

See also

“XML.childNodes Property” on page 230, “XML.firstChild Property” on page 233,
“XML.nextSibling Property” on page 236, “XML.previousSibling Property” on page 239

XML.load() Method
root.load(url)

Description

The load() method loads and parses an XML document from url into root. Only available
on the root node of the document. The load doesn’t happen immediately. Use the
root.onLoad() event handler for code to execute when the document has finished
downloading. The loaded document replaces the contents of root with the downloaded
XML data. When load() is first executed, the loaded property is set to false; then, when the
download is complete, the loaded property is set to true and the root node’s onLoad()
event handler is called. The XML data is not parsed until the entire document is loaded.
The parsing may be done using the default parser, or the root.onData() event handler may
be used to write your own parser.

Parameters

See also

“XML.loaded Property” on page 235, “XML.onLoad() Event Handler” on page 237,
“XML.sendAndLoad() Method” on page 240, “XML.status Property” on page 240,
“XML.onData() Event Handler” on page 237, “XML.parseXML() Method” on page 238

XML.loaded Property
root.loaded

Description

The loaded property holds true if the load() or sendAndLoad() operation has completed.
Otherwise it holds false. Only available on the root node of the document. This property
can only be read.

See also

“XML.load() Method” on page 235, “XML.onLoad() Event Handler” on page 237,
“XML.sendAndLoad() Method” on page 240, “XML.status Property” on page 240

url A string specifying the URL of the document to load and parse. Its XML hier-
archy is placed into root. For security reasons, the URL must be in the same
domain as that from which the movie clip was downloaded.

Using Help | Contents | Index Back 236

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 236

XML.nextSibling Property
node.nextSibling

Description

The nextSibling property holds a reference to the next node in the same level of the XML
object hierarchy, or null if node is the last node. This property can only be read.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");

tempNode = xmlDocument.childNodes[0];

trace(tempNode.firstChild.nodeValue);//prints "white"

tempNode = tempNode.nextSibling;

trace(tempNode.firstChild.nodeValue);//prints "grey"

See also

“XML.childNodes Property” on page 230, “XML.firstChild Property” on page 233,
“XML.lastChild Property” on page 234, “XML.nodeName Property” on page 236,
“XML.nodeValue Property” on page 236, “XML.previousSibling Property” on page 239

XML.nodeName Property
node.nodeName

Description

The nodeName property holds the tag name of node, or null if node is a text node. If the tag is
<mynode> then the nodeName is mynode. This property can be read or written.

See also

“XML.nodeType Property” on page 236, “XML.nodeValue Property” on page 236

XML.nodeType Property
node.nodeType

Description

The nodeType property holds the type of node. The possible values are 1 if this node is an
element node, or 3 if this node is a text node. This property can only be read.

See also

“XML.nodeName Property” on page 236, “XML.nodeValue Property” on page 236

XML.nodeValue Property
node.nodeValue

Using Help | Contents | Index Back 237

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 237

Description

The nodeValue property holds the text contained in node, or null if node is an element node.
This property can be read or written, though writing to it only makes sense if the node is a
text node.

See also

“XML.nodeName Property” on page 236, “XML.nodeType Property” on page 236

XML.onData() Event Handler
root.onData(source)

Description

The onData() user-defined event handler executes automatically whenever raw XML
source has finished loading into the XML document due to a previous root.load() or
root.sendAndLoad() call, but before the XML has been parsed. This allows you to write a
custom function that handles the raw XML, or you can simply let the default XML parser
execute on the raw XML. This event handler should only be defined if you want to do the
XML parsing yourself. It is only available on the root node of the document.

If the raw source that is received is undefined, the onData() event handler calls the
root.onLoad() event handler with the success parameter set to false. Otherwise, the
onData() event handler parses the raw XML, sets the root.loaded property to true, and calls
the root.onLoad() event handler with the success parameter set to true.

Parameters

Example

This example shows how to intercept the raw XML using the onData() event handler. It
uses a function literal.

xmlDocument = new XML();

xmlDocument.onData = function(source)

{

trace("Print the raw XML: \n" + source);

};

See also

“XML.onLoad() Event Handler” on page 237, “XML.load() Method” on page 235,
“XML.sendAndLoad() Method” on page 240, “XML.loaded Property” on page 235

XML.onLoad() Event Handler
root.onLoad(success)

source A string with the raw XML source.

Using Help | Contents | Index Back 238

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 238

Description

The onLoad() user-defined event handler is automatically executed whenever an external
XML file is loaded into root via the root.load() or root.sendAndLoad() method. By default,
the onLoad() event handler is an empty function: you must provide your own callback
handler, as shown in the example. The onLoad() event handler is only available on the root
node of the document and it offers an alternative to monitoring the state to the
root.loaded property before proceeding with processing the downloaded XML.

Parameters

Example

xmlDocument = new XML();

xmlDocument.onLoad = xmlProcessor;

xmlDocument.load("myFile.xml");

function xmlProcessor(success)

{

//function body

}

See also

“XML.onData() Event Handler” on page 237, “XML.load() Method” on page 235,
“XML.sendAndLoad() Method” on page 240, “XML.loaded Property” on page 235

XML.parentNode Property
node.parentNode

Description

The parentNode property holds the parent node of node, or null if node is at the top of the
hierarchy. This property can only be read.

See also

“XML.childNodes Property” on page 230, “XML.firstChild Property” on page 233,
“XML.lastChild Property” on page 234, “XML.previousSibling Property” on page 239

XML.parseXML() Method
root.parseXML(source)

success A boolean indicating success (true) or failure (false) of the
root.load() or root.sendAndLoad() method.

Using Help | Contents | Index Back 239

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 239

Description

The parseXML() method parses source as an XML document. It replaces any existing XML in
root with the resulting XML tree from source. Only available on the root node of the
document. This method is similar to the load() method, but the source is passed in as a
string so can be used, for example, to pass in user input rather than just the contents of a
URL or file.

Parameters

See also

“XML.load() Method” on page 235, “XML.status Property” on page 240

XML.previousSibling Property
node.previousSibling

Description

The previousSibling property holds a reference to the previous node in the same level of
the XML object hierarchy, or null if node is the first node. This property can only be read.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");

tempNode = xmlDocument.childNodes[1];

trace(tempNode.firstChild.nodeValue);//prints "grey"

tempNode = tempNode.previousSibling;

trace(tempNode.firstChild.nodeValue);//prints "white"

See also

“XML.childNodes Property” on page 230, “XML.firstChild Property” on page 233,
“XML.lastChild Property” on page 234, “XML.nextSibling Property” on page 236,
“XML.nodeName Property” on page 236, “XML.nodeValue Property” on page 236,
“XML.parentNode Property” on page 238

XML.removeNode() Method
node.removeNode()

Description

The removeNode() method deletes node and all of its children from the containing
document.

See also

“XML.appendChild() Method” on page 229

source The string to parse.

Using Help | Contents | Index Back 240

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 240

XML.send() Method
root.send(url, window)

Description

The send() method converts root into a string of XML source and sends it as an HTTP
request to url. The response data is usually an HTML file for display in a browser window;
this contrasts with the sendAndLoad() method, which receives XML for display directly from
the movie clip. Only available on the root node of the document.

Parameters

See also

“XML.sendAndLoad() Method” on page 240, “XML.load() Method” on page 235

XML.sendAndLoad() Method
root.sendAndLoad(url, responseXML)

Description

The sendAndLoad() method converts root into a string and sends it as an HTTP request to
url. The receiving application is supposed to reply with an XML document, which is parsed
as XML source and loaded into responseXML; this contrasts with the send() method, which
receives an HTML file for display in a browser window. Only available on the root node of
the document.

Parameters

See also

“XML.load() Method” on page 235, “XML.loaded Property” on page 235, “XML.send()
Method” on page 240, “XML.status Property” on page 240, “XML.onData() Event Handler”
on page 237, “XML.onLoad() Event Handler” on page 237

XML.status Property
root.status

url The URL to which to send the XML text.

window A string indicating the window in which to display data returned by
the server. This may be a custom name or one of the standard JavaS-
cript windows (_blank, _parent, _self, or _top).

url The URL to which to send the XML text. For security reasons, the URL must
be in the same domain as that from which the movie clip was down-
loaded.

responseXML The XML object into which to load the response.

Using Help | Contents | Index Back 241

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 241

Description

The status property holds an integer that indicates whether there was an error parsing the
XML document. Only available on the root node of the document. This property can only
be read. The possible error codes are:

• 0 — No error; parsing completed successfully.

• -2 — A CDATA section was not properly terminated.

• -3 — The XML declaration was not properly terminated.

• -4 — The DOCTYPE declaration was not properly terminated.

• -5 — A comment was not properly terminated.

• -6 — An XML element was malformed.

• -7 — Out of memory.

• -8 — An attribute value was not properly terminated.

• -9 — A start tag was not properly matched with an end tag.

• -10 — An end tag was not properly matched with a start tag.

Parsing occurs in several instances: when an XML object is first instantiated using the XML
constructor, when an XML object is loaded using the load() or sendAndLoad() method, or
XML is passed for parsing to the parseXML() method. Before checking the value of this
property, check the loaded property to ensure that the load() or sendAndLoad() method has
completed successfully.

See also

“XML.load() Method” on page 235, “XML.loaded Property” on page 235, “XML.onLoad()
Event Handler” on page 237, “XML.parseXML() Method” on page 238, “XML.sendAn-
dLoad() Method” on page 240,

XML.toString() Method
node.toString()

Description

The toString() method converts node into a string and returns it.

Returns

A string that is the XML source code equivalent of node.

Example

xmlDocument = new XML("<color>white</color><color2>grey</color2>");

trace(xmlDocument.toString());

//displays "<color>white</color><color2>grey</color2>"

See also

“Object.toString() Method” on page 200, “XML.nodeValue Property” on page 236

Using Help | Contents | Index Back 242

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 242

XML.xmlDecl Property
root.xmlDecl

Description

The xmlDecl property is a string that holds the XML declaration tag of the XML document.
It is only available on the root node of the document and is used to identify the version of
XML being used in the document. This property can be read or written.

Example

xmlDocument = new XML("<?xml version=\"1.0\"?><type>Bass</type>");

trace(xmlDocument.xmlDecl);

//prints "<?xml version="1.0"?>"

See also

“XML.docTypeDecl Property” on page 232

XMLnode Object
Description

The XMLnode object is the base class defining core properties and methods of nodes in an
XML object hierarchy. Few programmers will need to access this object, but it is possible to
use it to extend the default functionality of XML objects.

XMLSocket Object
Description

The XMLSocket object is used to implement a client socket that allows the Flash Player to
communicate with a server via an “open” connection. A socket connection is useful
because it remains “open”—that is, a TCP/IP connection doesn’t have to be made between
the client and the server each time communications occur between the two, as is required
when the HTTP protocol is used. This enables the Flash Player to listen for incoming
messages and quickly process them; it also allows it to respond quickly.

Constructor

new XMLSocket()

Parameters

None.

Properties

None.

Using Help | Contents | Index Back 243

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 243

Methods

Event Handlers

XMLSocket.close() Method
socket.close()

Description

The close() method closes an open socket connection.

See also

“XMLSocket.connect() Method” on page 243, “XMLSocket.onClose() Event Handler” on
page 244

XMLSocket.connect() Method
socket.connect(host, port)

Description

The connect() method creates a connection to a specified server. If this method returns
true, then the onConnect() event handler is invoked to complete the connection.

close() See “XMLSocket.close() Method” on
page 243.

Close an open socket connection.

connect() See “XMLSocket.connect() Method”
on page 243.

Create a connection to a specified
server.

send() See “XMLSocket.send() Method” on
page 247.

Send an XML object to the server.

onClose() See “XMLSocket.onClose() Event
Handler” on page 244.

Callback function that is called when a
connection has closed.

onConnect() See “XMLSocket.onConnect() Event
Handler” on page 245.

Callback function that is called when a
connection is created.

onData() See “XMLSocket.onData() Event Han-
dler” on page 246.

Callback function that is called when data
is received but has not yet been parsed as
XML.

onXML() See “XMLSocket.onXML() Event Han-
dler” on page 246.

Callback function that is called when data
has been received and parsed into an XML
object hierarchy.

Using Help | Contents | Index Back 244

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 244

Parameters

Returns

true if a connection is successfully created; false otherwise.

Example

function socketConnect(success)

{

if (success)

{

trace("Full connection achieved");

//other code

}

}

newSocket = new XMLSocket();

newSocket.onConnect = socketConnect;

if (newSocket.connect("http://www.adobe.com", 2000))

{

trace("Initial connection achieved");

//other code

}

See also

“XMLSocket.close() Method” on page 243, “XMLSocket.onConnect() Event Handler” on
page 245

XMLSocket.onClose() Event Handler
socket.onClose = functionName

socket.functionName()

Description

The onClose() user-defined callback function is called when a connection is closed by the
server. The default implementation of this method performs no action. To override the
default implementation, you must write your own handler, as shown in the example.

host A full DNS name or an IP address. null if you want to specify the current
server (where the currently executing SWF file was downloaded from).
For security reasons, if the Netscape SWF plug-in or an ActiveX control is
being used, the host must have the same domain name as the host from
which the SWF file was downloaded.

port The TCP port to which you wish to establish a connection. Must be a
number equal to or greater than 1024.

Using Help | Contents | Index Back 245

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 245

Parameters

Example

newSocket = new XMLSocket();

newSocket.onClose = socketClosed;

function socketClosed()

{

trace("The connection was closed by the server");

}

See also

“XMLSocket.close() Method” on page 243

XMLSocket.onConnect() Event Handler
socket.onConnect = functionName

socket.functionName(success)

Description

The onConnect() user-defined callback function is called when a connection is created. The
default implementation of this method performs no action. To override the default imple-
mentation, you must write your own handler, as shown in the example.

Parameters

Returns

true if a connection is successfully created; false otherwise.

Example

function socketConnect(success)

{

if (success)

{

trace("Full connection achieved");

//other code

}

}

functionName The name of the function to call when the indicated connection has
closed.

success A boolean indicating success (true) or failure (false).

functionName The name of the function to call when the connection is created.

Using Help | Contents | Index Back 246

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 246

newSocket = new XMLSocket();

newSocket.onConnect = socketConnect;

if (newSocket.connect("http://www.adobe.com", 2000))

{

trace("Initial connection achieved");

//other code

}

See also

“XMLSocket.connect() Method” on page 243

XMLSocket.onData() Event Handler
socket.onData(source)

Description

The onData() user-defined callback function is called when data is received but has not yet
been parsed. The onData() event handler executes automatically whenever a zero byte
(ASCII null character) is transmitted to the player over socket. This allows you to write a
function that handles the raw XML instead of the default parser that would otherwise be
used before the XML is passed onto the socket.onXML() event handler. If you have not
supplied onData() with a custom callback function, the XML is passed onto the default
XML parser, and then socket.onXML()is called with the result.

Parameters

Example

The following shows how to implement the onData() event handler using a function literal.

newSocket = new XMLSocket();

newSocket.onData = function(source)

{

trace("Print the raw XML: \n" + source);

};

See also

“XMLSocket.onXML() Event Handler” on page 246; “XML.onData() Event Handler” on
page 237

XMLSocket.onXML() Event Handler
socket.onXML = functionName

socket.functionName(object)

source A string with the raw XML source.

Using Help | Contents | Index Back 247

Adobe LiveMotion Scripting Guide Reference

Using Help | Contents | Index Back 247

Description

The onXML() user-defined callback function is called when data has been received and
parsed into an XML object hierarchy. It has been parsed either by the default parser or by a
custom onData() event handler. The default implementation of this method performs no
action. To override the default implementation, you must write your own handler.

Parameters

See also

“XMLSocket.send() Method” on page 247, “XMLSocket.onData() Event Handler” on
page 246

XMLSocket.send() Method
socket.send(object)

Description

The send() method converts object to a string and sends it to the server over the socket
connection, followed by a zero byte (ASCII null character). This operation is asynchronous:
the send() is initiated, but the operating system and networking software may not
complete the transmission until some amount of time has passed.

Parameters

See also

“XMLSocket.onXML() Event Handler” on page 246, “XMLSocket.send() Method” on
page 247

object An XML object containing a parsed XML document that was received from
the server.

functionName The name of the function to call when data has been received and parsed
into an XML object hierarchy.

object The XML object to send.

Using Help | Contents | Index Back 248

Adobe LiveMotion Scripting Guide Glossary

Using Help | Contents | Index Back 248

Glossary

Glossary Terms
Absolute reference Reference that uses _root as the starting point of the address to a
movie clip. The address is a string of movie clip names delimited by dot (.) notation repre-
senting each level in the object hierarchy from _root down to and including the name of
movie clip being referenced. The absolute reference is the same regardless of where in the
object hierarchy the source movie clip that is making the reference is located. An example
of an absolute reference is: _root.movieClipA.movieClipB._x

Anchor point Point that represents the 0,0 (x,y) origin point for all coordinates in a movie
clip. For a movie clip group with multiple objects, the anchor point is set to the center of
the group.

Animation Changes applied to an object over time.

Button Movie clip that has a button event handler or has had states added to it by the
user.

Composition Refers to a .liv file that is created in LiveMotion.

Composition timeline Main timeline of a composition; also referred to as _root’s
timeline.

Composition window Window in the LiveMotion user interface that displays objects as
they are created and edited. The objects are displayed as they appear at the current time,
which is determined by the current- time marker in the Timeline window. The Compo-
sition window also displays the results of previewing a composition.

DOM Document Object Model. All the objects, their methods, and properties that are
supported by LiveMotion as extensions to the JavaScript core.

Event User interaction, such as pressing a key or dragging the mouse, or system inter-
action, such as loading a movie clip.

Filename.liv Document created in the LiveMotion application using LiveMotion’s
interface tools, palettes, and (optional) scripting code; also referred to as a composition.

Interactivity Result of a user event such as pressing a button or moving the mouse over
an object in a composition or a system event such as loading a movie clip. The event
triggers an event handler that performs a response when the event occurs.

Keyframe script Script added to a frame in a timeline.

Label String identifier that references a frame in a timeline.

Movie clip Copy of the MovieClip object that has its own timeline and unique name and
can be manipulated by writing scripts.

Movie clip group Parent movie clip containing one or more nested objects.

Parent Timeline upon which a movie clip or movie clip group is created.

Using Help | Contents | Index Back 249

Adobe LiveMotion Scripting Guide Glossary

Using Help | Contents | Index Back 249

Path Reference enclosed in quotation marks. An example of a path is:
"_root.movieClipA.movieClipB._x"

Relative reference Movie clip names delimited by dot (.) notation that “navigate”
through the object hierarchy and include the name of each movie clip from the source
movie clip to the movie clip it is referencing. The contents of a relative reference are deter-
mined by the hierarchical relationship of the source movie clip to the movie clip it is
addressing. Although using the keyword this is optional in the relative reference, this
scripting guide begins all relative references with this. An example relative reference is:
this._parent.movieClipA.movieClipB._x

Script keyframe Keyframe to which a script is added.

Siblings Movie clips on the timeline of the same parent.

Source Movie clip that is controlling another movie clip by calling MovieClip methods or
manipulating MovieClip properties.

SWF File format into which a LiveMotion composition is converted on export on export
to Macromedia Flash format. SWF files can be viewed with the Flash Player or a Web
browser with the Flash plug-in.

Using Help | Contents | Index Back 250

Adobe LiveMotion Scripting Guide Legal Notices

Using Help | Contents | Index Back 250

Legal Notices

Copyright
© 2002 Adobe Systems Incorporated. All rights reserved.

Adobe® LiveMotion™ 2.0 Scripting Guide for Windows® and Macintosh®

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part of
this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, or
otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under
copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies
that may appear in the informational content contained in this guide. Please remember that existing artwork or images that you may want to
include in your project may be protected under copyright law. The unauthorized incorporation of such material into your new work could be a
violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner. Any references to
company names in sample templates are for demonstration purposes only and are not intended to refer to any actual
organization.

Adobe, the Adobe logo, Acrobat, Acrobat Reader, Adobe Dimensions, Adobe Premiere, Adobe Type Manager, After Effects, AlterCast,
Classroom in a Book, FrameMaker, GoLive, Illustrator, InDesign, LiveMotion, Minion, Myriad, PageMaker, Photoshop, PostScript, PostScript 3,
Reader, Streamline, Type Reunion are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or
other countries. Microsoft, OpenType, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the U.S and/or other
countries. Apple, Macintosh, Power Macintosh, QuickTime, the QuickTime logo, and TrueType are trademarks of Apple Computer, Inc. regis-
tered in the U.S. and other countries. QuickTime and the QuickTime logo are trademarks used under license. IBM and OS/2 are registered
trademarks of International Business Machines Corporation. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company, Ltd. Pentium is a registered trademark of Intel Corporation. Macromedia and Flash are trademarks or
registered trademarks of Macromedia, Inc. in the United States and/or other countries. Sun is a trademark or registered trademark of Sun
Microsystems, Inc. in the United States and other countries. All other trademarks are the property of their respective
owners.

MPEG lyer-3 audio compression technology licensed by Fraunhofer IIS and THOMSON multimedia. Contains an implementation of the LZW
algorithm licensed under U.S. Patent 4,558,302. Digital Imagery© copyright 2001 PhotoDisc, Inc.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101,
consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R.
§12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the
Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users (a)
only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein.
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including,
if appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 60-
250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

Using Help | Contents | Index Back 251

Adobe LiveMotion Scripting Guide Index

Using Help | Contents | Index Back 251

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

A
absolute reference 46

ActionScript Syntax Helpers 88

adding states 7

attachSound() object method 61

Automation syntax helper 15, 86

B
behaviors

mapping to scripts 30

Behaviors button 27

bounds checking 23

C
children 56

clearing breakpoints 100

composition 7

Composition browser 15, 86, 89

Console window

comparing output to Debugger 103

using with Debugger 103

writing to 102

current-time marker 20

D
Debugger

activating 94

Add variable 98

buttons 96

Call stack window 95

expression entry field 98, 101

halting execution 96

Kill 97

modes 94

modes for bringing up 94

Run 96

setting breakpoints 100

single-stepping 97

Source window 96

Step 97

Step into 97

Step out 98

Stop 96

terminating sessions 97

using with Console window 102

Variable window 95, 102

watching variables 98, 101

windows 95

depth 58, 61

Description window 16, 86

dot (.) notation 45

E
event handlers

automatically generated 74

button 71

defined 21, 64

key 68

mouse 70

system-based 65

event types 64

examples, list of hands-on 5

Export 60

exporting 7, 19

F
Find 15, 87, 93

forms

creating 80

sending and receiving variables 79, 80

using text fields 77

Using Help | Contents | Index Back 252

Adobe LiveMotion Scripting Guide Index

Using Help | Contents | Index Back 252

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

G
global function

fscommand() 148

global functions

Boolean() 120

Date() 125

duplicateMovieClip() 55, 146

escape() 147

eval() 148

getTimer() 149

getURL() 79, 149

gotoAndPlay() 151

gotoAndStop() 151

isFinite() 152

isNan() 153

lmFrameOfLabel() 161

loadMovie() 63, 79, 162

loadMovieNum() 163

loadVariables() 79, 163

loadVariablesNum() 164

nextFrame() 194

Number() 194

parseFloat() 202

parseInt() 202

play() 203

prevFrame() 203

removeMovieClip() 204

startDrag() 213

stop() 213

stopAllSounds() 213

stopDrag() 214

String() 214

targetPath() 224

that use _leveln 63

trace() 224

unescape() 225

unloadMovie() 63, 225

unloadMovieNum() 226

updateAfterEvent 226

global properties

_focusrect 148

_leveln 63, 161

_quality 204

_root 204

_soundbuftime 212

-Infinity 152

Infinity 152

NaN 194

newline 194

Go to Label (and play) 34

Go to Label (and stop) 34

Go to next script 15, 87, 91

Go to previous script 15, 87, 91

Go To Relative Time 34

H
Handler scripts 15, 87, 91

hands-on examples

automatically generated button handlers 74

changing movie clip states 32

creating a bounds check 23

creating a button event handler 72

creating a preloader 37

creating a simple event handler 22

creating a state script 24

creating a toggle button 73

creating an onKeyDown event handler 69

initializing a movie clip property 22, 23

mouse trailer 51

programmatic bounce 66

using script keyframes 17

using system-based event handlers 65

writing a keyframe script to a movie clip
timeline 19

hands-on examples, list of 5

hierarchy, movie clips 44

I
independent timelines 27

initializing properties 22

J
JavaScript

ECMA-standard 4, 8

Using Help | Contents | Index Back 253

Adobe LiveMotion Scripting Guide Index

Using Help | Contents | Index Back 253

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

LiveMotion implementation of 9

JavaScript references 6

JavaScript Syntax Helpers 88

K
Keyframe scripts 15, 87, 92

keyframe scripts

on a movie clip timeline 19

L
labels 8, 36, 52

creating 16

defined 16

guidelines for creating label names 16

jump to 19

label names 18

names 19

specifying as argument values 19

string values 19

using 16

_leveln 63

.liv files 7, 27

M
Make Movie Clip Group command 43

modes, Debugger 94

Movie Clip command 43

movie clip events 64

Movie clip navigator 15, 86, 87

movie clips

_root 44

accessing shareable 61

and movie clip groups 43

attachMovie() method 55, 61

built-in methods 42, 49

built-in properties 42, 48

creating manually 43

creating methods 54

creating programmatically 55

creating properties 54

defined 7, 42

duplicateMovieClip() method 55

events and handlers 21

hierarchy 20, 44, 51

hierarchy and the programmatic stack 58

placement of programmatically created 59

properties 48, 51

sharing 60

swapDepths() method 58

N
names, label 16

new operator 42

O
objects

Arguments 108

Array 110

Boolean 121

Color 122

Date 126

Key 153

Math 165

Mouse 173

MovieClip 174

Number 195

Object 199

Selection 205

Sound 207

String 214

XML 227

XMLnode 242

XMLSocketObject 242

objects, scriptable 17

P
parent-child relationship 44

placing scripts 14

Play 34

Preview mode 19

programmatic stacks 56

properties

creating movie clip 54

initializing 22

Using Help | Contents | Index Back 254

Adobe LiveMotion Scripting Guide Index

Using Help | Contents | Index Back 254

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

setting 8

R
relative reference 46

_root movie clip 44, 48, 49, 79

S
Script Editor

buttons 86

setting breakpoints 99

window 85

script keyframes 14, 30

accessing scripts 27

and timelines 26, 27

creating 17

defined 17

on the composition timeline 17

Script window 16, 86

Scripting helper window 16, 86

Scripting syntax helper 15, 30, 86, 88

scripts

accessing 29

adding to states 24

adding to timelines 29

Change State 31

creating Flash Player commands 39

deleting 30

Go to Label (and play) 35

Go to Label (and stop) 35

Go to RelativeTime 34

Go to URL 40

locations of 8, 14

on event handlers 22

on states 24

opening 30

placing 14

Play 34

Run JavaScript 40

state 24

stop 34

Stop All Sounds 40

Wait For Download 36

Scripts button 27

Scripts Editor

opening 20

setting breakpoints

in Script Editor 99

in the Debugger 100

setting properties 8

siblings 57

single-stepping 97

sound objects, accessing shareable 61

state change events 64

State scripts 15, 87, 92

state scripts 24

states

and timelines 26

predefined 75

writing scripts to 27

States palette 27, 30

states, adding 7

static stacks 56

Stop 34

SWF files 39, 56, 62, 63

loading 39

stacking order of 63

unloading 39

Syntax highlighting 16, 87, 93

T
text fields

creating and using 77

scroll and maxscroll properties 224

this 20, 45, 46, 53

time-independent 7

toggle buttons, creating 73

X
XML

using for communications 82

XML sockets 82

processing incoming data 84

Using Help | Contents | Index Back 255

Adobe LiveMotion Scripting Guide Index

Using Help | Contents | Index Back 255

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Z
z-order 44, 58

	Using Help
	About online Help
	Navigating in Help
	Using bookmarks, the table of contents, the index, and Find
	Printing the Help file

	Contents
	Introduction
	Overview of this guide
	What you should know
	Organization of this guide
	Hands-on examples in this guide
	Where to go for more information

	Overview
	Script authoring
	LiveMotion objects
	Writing scripts to objects
	Extending functionality
	Script locations
	JavaScript in LiveMotion

	Writing Scripts
	Introduction to script writing
	Script Editor overview
	Using labels
	What is a label?
	Guidelines for creating label names
	How to create labels
	Using a label in a script

	Using script keyframes
	What are script keyframes?
	How to create script keyframes
	Hands-on example 2_1: Writing a keyframe script to the composition timeline
	Hands-on example 2_2: Writing a keyframe script to a movie clip timeline

	Using event handlers
	What are event handlers?
	How to add a script to an event handler
	Hands-on example 2_3: Creating a simple event handler
	Hands-on example 2_4: Initializing a movie clip property
	Hands-on example 2_5: Creating a bounds check

	Using state scripts
	What are state scripts?
	How to add scripts to states
	Hands-on example 2_6: Creating a state script

	Behaviors
	Introduction to behaviors
	Working with scripts that replace behaviors
	The effect of writing scripts to movie clip timelines versus movie clip states
	Accessing scripts
	Adding Scripts
	Opening scripts
	Deleting scripts

	Creating LiveMotion 1.0 behaviors using LiveMotion 2.0 scripts
	Creating Change State scripts
	Hands-on example 3_1: Changing movie clip states
	Creating scripts to manipulate a movie clip timeline
	Creating Wait For Download scripts
	Hands-on example 3_2: Creating a preloader
	Creating scripts to command the Flash Player
	Creating scripts to control the Web browser

	Movie Clips
	Introduction to movie clips
	How to create a movie clip using LiveMotion
	Basic methods

	Movie clip hierarchy
	Relationship of movie clip hierarchy to z-order
	How to access movie clips in the hierarchy

	Movie clip addressing
	What is an absolute reference?
	Absolute reference example
	What is a relative reference?
	Relative reference examples
	When to use an absolute or a relative reference
	More examples of movie clip addressing

	Movie clip properties and methods
	Built-in movie clip properties
	Built-in movie clip methods
	Hands-on example 4_1: Mouse trailer
	Creating movie clip properties and methods

	Creating movie clips programmatically
	Using attachMovie() to create movie clip copies
	Using duplicateMovieClip() to create movie clip copies
	Static and programmatic stacks
	Manipulating the stack depth with attachMovie() and duplicateMovieClip()
	Using swapDepths() to swap movie clip positions in the programmatic stack
	What the programmatic stack does to the movie clip hierarchy

	Making shareable movie clips (and shareable sounds)
	Setting up shareable movie clips in your composition
	Accessing movie clips and sounds in an external SWF file

	Levels of the Flash Player
	Movie clip global functions that use _leveln as an argument
	Using loadMovie() to load a SWF file
	Using unloadMovie() to unload a SWF file

	Movie Clip Events and Event Handlers
	Introduction to events
	Event types
	Event handlers

	System-based events and event handlers
	onData
	onLoad
	onEnterFrame
	onUnload
	Hands-on example 5_1: Using system-based event handlers to rotate a movie�clip
	Hands-on example 5_2: Programmatic bounce

	Key events and event handlers
	onKeyDown
	onKeyUp
	Using key event handlers
	Hands-on example 5_3: Creating an onKeyDown event handler

	Mouse events and event handlers
	onMouseMove
	onMouseDown
	onMouseUp

	Button events and event handlers
	onButtonPress
	onButtonRelease
	onButtonReleaseOutside
	onButtonRollOver
	onButtonRollOut
	onButtonDragOut
	onButtonDragOver
	Hands-on example 5_4: Creating a simple button event handler
	Hands-on example 5_5: Creating a toggle button

	State change events and handlers
	Automatically generated button event handlers
	Hands on example 5_6: Experimenting with automatically generated button event handlers

	Dynamic Data
	Introduction to dynamic data
	Forms and text fields
	loadVariables(), loadMovie(), and getURL()
	How to create a form and send its data to a server
	XML communications
	XML socket communications

	Script Editor
	Introduction to the Script Editor
	Exploring the Script Editor
	Script Editor window

	Script Editor buttons
	Movie clip navigator
	Scripting syntax helper
	Composition browser
	Go to previous script and Go to next script buttons
	Handler scripts button
	State scripts button
	Keyframe scripts button
	Find button
	Syntax highlighting button

	Debugger
	Introduction to the Debugger
	Exploring the Debugger
	Bringing up the Debugger
	Debugger window
	Debugger buttons
	Watching variables
	Setting breakpoints
	Clearing breakpoints
	Setting a breakpoint in the MouseTrailer onLoad script

	Using the Console window
	Exploring the Console window

	Reference
	Introduction
	Keywords and statement syntax
	Operators
	Reference for Objects, Methods, Properties, and Globals
	Arguments Object
	Arguments.callee Property
	Arguments.length Property
	Array Object
	Array.concat() Method
	Array.join() Method
	Array.length Property
	Array.pop() Method
	Array.push() Method
	Array.reverse() Method
	Array.shift() Method
	Array.slice() Method
	Array.sort() Method
	Array.splice() Method
	Array.toString() Method
	Array.unshift() Method
	Boolean() Global Function
	Boolean Object
	Boolean.toString() Method
	Boolean.valueOf() Method
	Color Object
	Color.getRGB() Method
	Color.getTransform() Method
	Color.setRGB() Method
	Color.setTransform Method
	Date() Global Function
	Date Object
	Date.getDate() Method
	Date.getDay() Method
	Date.getFullYear() Method
	Date.getHours() Method
	Date.getMilliseconds() Method
	Date.getMinutes() Method
	Date.getMonth() Method
	Date.getSeconds() Method
	Date.getTime() Method
	Date.getTimezoneOffset() Method
	Date.getUTCDate() Method
	Date.getUTCDay() Method
	Date.getUTCFullYear() Method
	Date.getUTCHours() Method
	Date.getUTCMilliseconds() Method
	Date.getUTCMinutes() Method
	Date.getUTCMonth() Method
	Date.getUTCSeconds() Method
	Date.getYear() Method
	Date.setDate() Method
	Date.setFullYear() Method
	Date.setHours() Method
	Date.setMilliseconds() Method
	Date.setMinutes() Method
	Date.setMonth() Method
	Date.setSeconds() Method
	Date.setTime() Method
	Date.setUTCDate() Method
	Date.setUTCFullYear() Method
	Date.setUTCHours() Method
	Date.setUTCMilliseconds() Method
	Date.setUTCMinutes() Method
	Date.setUTCMonth() Method
	Date.setUTCSeconds() Method
	Date.setYear() Method
	Date.toString() Method
	Date.UTC() Method
	Date.valueOf() Method
	duplicateMovieClip() Global Function
	escape() Global Function
	eval() Global Function
	_focusrect Global Property
	fscommand() Global Function
	getTimer() Global Function
	getURL() Global Function
	getVersion() Global Function
	gotoAndPlay() Global Function
	gotoAndStop() Global Function
	Infinity Global Property
	-Infinity Global Property
	isFinite Global Function
	IsNan() Global Function
	Key Object
	Key.BACKSPACE Constant
	Key.CAPSLOCK Constant
	Key.CONTROL Constant
	Key.DELETEKEY Constant
	Key.DOWN Constant
	Key.END Constant
	Key.ENTER Constant
	Key.ESCAPE Constant
	Key.getAscii() Method
	Key.getCode() Method
	Key.HOME Constant
	Key.INSERT Constant
	Key.isDown() Method
	Key.isToggled() Method
	Key.LEFT Constant
	Key.PGDN Constant
	Key.PGUP Constant
	Key.RIGHT Constant
	Key.SHIFT Constant
	Key.SPACE Constant
	Key.TAB Constant
	Key.UP Constant
	_leveln Global Property
	lmFrameOfLabel() Global Function
	loadMovie() Global Function
	loadMovieNum() Global Function
	loadVariables() Global Function
	loadVariablesNum() Global Function
	Math Object
	Math.abs() Method
	Math.acos() Method
	Math.asin() Method
	Math.atan() Method
	Math.atan2() Method
	Math.ceil() Method
	Math.cos() Method
	Math.E Constant
	Math.exp() Method
	Math.floor() Method
	Math.LN2 Constant
	Math.LN10 Constant
	Math.log() Method
	Math.LOG2E Constant
	Math.LOG10E Constant
	Math.max() Method
	Math.min() Method
	Math.PI Constant
	Math.pow() Method
	Math.random() Method
	Math.round() Method
	Math.sin() Method
	Math.sqrt() Method
	Math.SQRT1_2 Constant
	Math.SQRT2 Constant
	Math.tan() Method
	Mouse Object
	Mouse.hide() Method
	Mouse.show() Method
	MovieClip Object
	MovieClip._alpha Property
	MovieClip.attachMovie() Method
	MovieClip._currentframe Property
	MovieClip._droptarget Property
	MovieClip.duplicateMovieClip() Method
	MovieClip._framesloaded Property
	MovieClip.getBounds() Method
	MovieClip.getBytesLoaded() Method
	MovieClip.getBytesTotal() Method
	MovieClip.getURL() Method
	MovieClip.globalToLocal() Method
	MovieClip.gotoAndPlay() Method
	MovieClip.gotoAndStop() Method
	MovieClip._height Property
	MovieClip.hitTest() Method
	MovieClip.lmSetCurrentState() Method
	MovieClip.loadMovie() Method
	MovieClip.loadVariables() Method
	MovieClip.localToGlobal() Method
	MovieClip._name Property
	MovieClip.nextFrame() Method
	MovieClip._parent Property
	MovieClip.play() Method
	MovieClip.prevFrame() Method
	MovieClip.removeMovieClip() Method
	MovieClip._rotation Property
	MovieClip.startDrag() Method
	MovieClip.stop() Method
	MovieClip.stopDrag() Method
	MovieClip.swapDepths() Method
	MovieClip._target Property
	MovieClip._totalframes Property
	MovieClip.unloadMovie() Method
	MovieClip._url Property
	MovieClip.valueOf() Method
	MovieClip._visible Property
	MovieClip._width Property
	MovieClip._x Property
	MovieClip._xmouse Property
	MovieClip._xscale Property
	MovieClip._y Property
	MovieClip._ymouse Property
	MovieClip._yscale Property
	NaN Global Property
	newline Constant
	nextFrame() Global Function
	Number() Global Function
	Number Object
	Number.MAX_VALUE Property
	Number.MIN_VALUE Property
	Number.NaN Property
	Number.NEGATIVE_INFINITY Property
	Number.POSITIVE_INFINITY Property
	Number.toString() Method
	Number.valueOf() Method
	Object Class
	Object.constructor Property
	Object.__proto__ Property
	Object.toString() Method
	Object.valueOf() Method
	parseFloat() Global Function
	parseInt() Global Function
	play() Global Function
	prevFrame() Global Function
	_quality Global Property
	removeMovieClip() Global Function
	_root Global Property
	Selection Object
	Selection.getBeginIndex() Method
	Selection.getCaretIndex() Method
	Selection.getEndIndex() Method
	Selection.getFocus() Method
	Selection.setFocus() Method
	Selection.setSelection() Method
	Sound Object
	Sound.attachSound() Method
	Sound.getPan() Method
	Sound.getTransform() Method
	Sound.getVolume() Method
	Sound.setPan() Method
	Sound.setTransform() Method
	Sound.setVolume() Method
	Sound.start() Method
	Sound.stop() Method
	_soundbuftime Global Property
	startDrag() Global Function
	stop() Global Function
	stopAllSounds() Global Function
	stopDrag() Global Function
	String() Global Function
	String Object
	String.charAt() Method
	String.charCodeAt() Method
	String.concat() Method
	String.fromCharCode() Method
	String.indexOf() Method
	String.lastIndexOf() Method
	String.length Property
	String.slice() Method
	String.split() Method
	String.substr() Method
	String.substring() Method
	String.toLowerCase() Method
	String.toUpperCase() Method
	targetPath() Global Function
	Text Field Properties
	trace() Global Function
	unescape() Global Function
	unloadMovie() Global Function
	unloadMovieNum() Global Function
	updateAfterEvent() Global Function
	XML Object
	XML.appendChild() Method
	XML.attributes Property
	XML.childNodes Property
	XML.cloneNode() Method
	XML.contentType Property
	XML.createElement() Method
	XML.createTextNode() Method
	XML.docTypeDecl Property
	XML.firstChild Property
	XML.hasChildNodes() Method
	XML.ignoreWhite Property
	XML.insertBefore() Method
	XML.lastChild Property
	XML.load() Method
	XML.loaded Property
	XML.nextSibling Property
	XML.nodeName Property
	XML.nodeType Property
	XML.nodeValue Property
	XML.onData() Event Handler
	XML.onLoad() Event Handler
	XML.parentNode Property
	XML.parseXML() Method
	XML.previousSibling Property
	XML.removeNode() Method
	XML.send() Method
	XML.sendAndLoad() Method
	XML.status Property
	XML.toString() Method
	XML.xmlDecl Property
	XMLnode Object
	XMLSocket Object
	XMLSocket.close() Method
	XMLSocket.connect() Method
	XMLSocket.onClose() Event Handler
	XMLSocket.onConnect() Event Handler
	XMLSocket.onData() Event Handler
	XMLSocket.onXML() Event Handler
	XMLSocket.send() Method

	Glossary
	Glossary Terms

	Legal Notices
	Copyright

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	X
	Z

