
bbc

Adobe® LiveCycle™ Policy Server
Version 7.0

Developing Custom Applications

© 2004 Adobe Systems Incorporated. All rights reserved.

Adobe® LiveCycle™ Policy Server 7.0 Developing Custom Applications for Microsoft® Windows® and UNIX®
December 2004

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording,
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected
under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to
obtain any permission required from the copyright owner.

Any references to company names and company logos in sample material or in the sample forms included in this software are for
demonstration purposes only and are not intended to refer to any actual organization.

Adobe, the Adobe logo, Acrobat, LiveCycle, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

IBM and WebSphere are trademarks of International Business Machines Corporation in the United States and/or other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group.

All other trademarks are the property of their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org).

This product includes code licensed from RSA Data Security.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101,
consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R.
§12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable,
the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users
(a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein.
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if
appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60,
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

 3

Contents

List of Examples ... 6

Preface .. 8
What’s in this guide? ... 8
Who should read this guide? ... 8
Related documentation ... 8

1 Introduction ... 9
Java libraries... 9

2 Invoking Policy Server... 10
Including the API library files ...10

Adding import statements ...12
Connecting to Policy Server ...12

Connecting to Policy Server using SOAP ..13
Connecting to Policy Server using EJB...13

Creating Policy Server manager objects ..14
Creating a PolicyManager object ...14
Creating a DocumentManager object..15
Creating an EventManager object ...15
Creating a LicenseManager object ..16
Creating a UserManager object ..16
Creating a WatermarkManager object...16

Working with InfomodelObjectFactory objects..17
Disconnecting from Policy Server ..17

3 Working with Policies.. 18
Creating policies ...18

Creating a Policy object ...19
Creating a Policy object based on a PDRL XML file ...19

Setting policy attributes ..20
Setting a document’s offline lease period ..20
Setting a document’s metadata ...20
Setting a policy’s name and description ...21
Setting a document’s event tracking..21
Setting a policy’s validity period ..22
Setting a policy’s alternative identifier...23
Setting a policy’s watermark..23
Setting the EncryptAttachmentsOnly attribute..23

Adobe LiveCycle Policy Server Contents
Developing Custom Applications 4

3 Working with Policies (Continued)
Working with policy entries..24

Creating a PolicyEntry object ..24
Working with permissions ..25

Adding permissions to a policy entry...25
Retrieving permissions from a policy entry..25
Removing a specific permission from a policy entry ..26
Removing all permissions from a policy entry..26

Working with policy principals..26
Adding a principal to a policy entry..26
Retrieving a principal associated with a policy entry ...27
Removing a principal ..27

Attaching a policy entry to a policy ..27
Managing policies..28

Registering policies ...29
Retrieving existing policies...29
Retrieving a specific policy ...30
Changing the owner of a policy ...30
Updating policies ...31
Deleting Policies...32

Querying policy information..32

4 Working with Policy Server Principals ... 33
Creating a special principal object...33
Retrieving existing principals...34

Retrieving groups ..34
Retrieving users ..34

Querying principal information ..35

5 Managing Documents ... 36
Securing documents with policies...36

Creating a policy-protected document ...37
Removing policy security from a document..38
Switching document policies ..38
Retrieving a license from a policy-protected document...38

Revoking and reinstating documents ..39
Revoking documents..39
Reinstating documents..40

Managing licenses ...40
Changing a policy associated with a license..40
Setting an alternative Id for a license ...41
Retrieving existing licenses ..41
Retrieving a specific license ...42
Updating the URL of a license ...43

Querying license information ..43

Adobe LiveCycle Policy Server Contents
Developing Custom Applications 5

6 Working with Watermarks .. 44
Creating watermarks...44

Creating a Watermark object...44
Setting watermark attributes...45

Setting the background attribute..45
Setting the custom text attribute ..45
Setting the setDateIncluded attribute ...46
Setting the setHorizontalAlignment attribute ..46
Setting the name attribute...46
Setting the opacity attribute ...46
Setting the rotation attribute ..47
Setting the scale attribute ..47
Setting the setUserIdIncluded attribute..47
Setting the setUserNameIncluded attribute..48
Setting the setVerticalAlignment attribute ..48

Managing watermarks..48
Registering watermarks...49
Retrieving existing watermarks ..49
Updating watermarks...50
Deleting watermarks ..50

Querying watermark information ..51

7 Registering Event Handlers .. 52
Events and event handlers..52
Registering event handlers...53
Unregistering event handlers ..54
Retrieving event handlers ...54
Modifying event handlers ...54
Retrieving subscribable events ...55

 6

List of Examples

Example 2.1 Connecting to Policy Server using SOAP ..13

Example 2.2 Connecting to Policy Server using EJB...14

Example 2.3 Creating a PolicyManager object...15

Example 2.4 Creating a DocumentManager object ...15

Example 2.5 Creating an EventManager object...15

Example 2.6 Creating a LicenseManager object..16

Example 2.7 Creating a UserManager object..16

Example 2.8 Creating a WatermarkManager object ..16

Example 3.1 Creating a Policy object...19

Example 3.2 Creating a Policy object based on a PDRL XML file ...19

Example 3.3 Setting a document’s offline lease period..20

Example 3.4 Setting a document’s metadata...21

Example 3.5 Setting a policy’s name and description ...21

Example 3.6 Setting a document’s event tracking ...21

Example 3.7 Setting a policy’s validity period ..22

Example 3.8 Setting a policy’s alternative Id...23

Example 3.9 Setting a policy’s watermark ...23

Example 3.10 Setting the EncryptAttachmentsOnly attribute ...24

Example 3.11 Creating a PolicyEntry object ..24

Example 3.12 Adding permissions to a policy entry...25

Example 3.13 Retrieving permissions from a policy entry..26

Example 3.14 Removing a specific permission from a policy entry ..26

Example 3.15 Removing all permissions from a policy entry..26

Example 3.16 Adding a principal to a policy entry..27

Example 3.17 Retrieving a principal from a policy entry...27

Example 3.18 Removing a principal from a policy entry...27

Example 3.19 Attaching a policy entry to a policy ..28

Example 3.20 Registering a policy...29

Example 3.21 Retrieving multiple policies ...30

Example 3.22 Retrieving a specific policy...30

Example 3.23 Changing the owner of a policy ...31

Example 3.24 Updating a policy ..31

Example 3.25 Deleting a policy ..32

Example 4.1 Creating a principal object ...33

Example 4.2 Retrieving Policy Server groups ...34

Example 4.3 Retrieving Policy Server groups ...35

Example 5.1 Securing a document ...37

Adobe LiveCycle Policy Server List of Examples
Developing Custom Applications 7

Example 5.2 Removing policy security from a document..38

Example 5.3 Retrieving a license from a policy-protected document...39

Example 5.4 Revoking a document..40

Example 5.5 Reinstating a document..40

Example 5.6 Changing a policy associated with a license ...41

Example 5.7 Setting a license’s alternative Id...41

Example 5.8 Retrieving existing licenses..42

Example 5.9 Retrieving a specific license ...42

Example 6.1 Creating a Watermark object ..44

Example 6.2 Setting the background attribute..45

Example 6.3 Setting the custom text attribute ..45

Example 6.4 Setting the setDateIncluded attribute...46

Example 6.5 Setting the setHorizontalAlignment attribute..46

Example 6.6 Setting the name attribute...46

Example 6.7 Setting the opacity attribute ...47

Example 6.8 Setting the rotation attribute..47

Example 6.9 Setting the scale attribute ..47

Example 6.10 Setting the setUserIdIncluded attribute..47

Example 6.11 Setting the setUserNameIncluded attribute ...48

Example 6.12 Setting the setVerticalAlignment attribute..48

Example 6.13 Registering a watermark with Policy Server ..49

Example 6.14 Retrieving an existing watermark..50

Example 6.15 Updating a watermark...50

Example 6.16 Deleting a watermark...50

Example 7.1 Registering an event handler ..53

Example 7.2 Retrieving event handlers ..54

Example 7.3 Modifying event handlers ..55

Example 7.4 Retrieving subscribable events...55

 8

Preface

This guide provides information about how to use the Adobe® LiveCycle™ Policy Server SDK to develop
custom Policy Server client applications.

What’s in this guide?
This guide contains the following information:

● Requirements for setting up the development environment.

● How to use the API to programmatically interact with Policy Server to create and manage Policy Server
collateral, such as policies, watermarks, and principals.

● Code examples that show how to achieve specific tasks.

Note: The SDK also includes Java libraries for developing custom service providers that integrate with
Policy Server. Although this guide does not describe how to use these libraries, the API Reference
includes information about them. For information about developing custom service providers,
contact Adobe Customer Support.

Who should read this guide?
Java developers who want to create custom Policy Server client applications should read this guide. To use
this guide, you should be familiar with the Java programming language.

Related documentation
You can use other product documentation to learn more about Policy Server:

For information about See

Changes to the product that occurred late in the
development cycle

Policy Server Readme

The Policy Server SDK API API Reference

How to install Policy Server Installing and Configuring guide

Policy Server features and security information Overview guide

How to use the Policy Server administrator and
user features

Policy Server Help

Other Adobe LiveCycle products http://www.adobe.com

http://www.adobe.com

 9

1 Introduction

This chapter provides a description of the type of software that you can develop using the Policy Server
SDK API. Also included are descriptions of the Java libraries that you use.

Policy Server is a web-based security system that enables users to dynamically apply confidentiality
settings to their PDF documents and maintain control over the documents no matter how widely users
distribute them.

Policy Server consists of several components, including a server, client applications, and an SDK. The SDK
enables Java developers to create applications that access the server component. The public API included
with Policy Server provide the tools required to perform most of the tasks that the Policy Server web
applications perform.

Note: See the Overview guide for more information about the Policy Server features and architecture.

Java libraries
The Policy Server SDK includes two Java libraries that enable you to programmatically interact with
Policy Server:

● The com.adobe.edc.sdk package provides classes and interfaces for connecting to Policy Server and
instantiating managers for manipulating Policy Server collateral, such as licenses, policies, and
watermarks.

● The com.adobe.edc.sdk.infomodel package provides classes and interfaces for creating and
manipulating objects that represent Policy Server collateral, such as licenses, policies, and watermarks.

Note: The SDK also includes Java libraries for developing custom service providers that integrate with
Policy Server. Although this guide does not describe how to use these libraries, the API Reference
includes information about them. For information about developing custom service providers,
contact Adobe Customer Support.

PDF

PDF
PDF

email, network folder, web site

Adobe Acrobat
Professional

Adobe Acrobat
Standard

Adobe Reader

Document recipient:
�Opens document
�Uses according to policy

Adobe
Policy Server

Authentication
Authorization
Auditing
Key management

Adobe Acrobat
Professional 7.0

Adobe Acrobat
Standard 7.0

Document owner:
�Attaches policy
�Saves document
�Distributes

Web browser

Document Owner or
Administrator:
�Creates policies

Web browser

Document Owner or
Administrator:
�Tracks documents
�Modifies access

1

3

4

2

 10

2 Invoking Policy Server

You use the Policy Server API to create custom applications capable of interacting with Policy Server. For
example, using the Policy Server API, you can create an application that dynamically creates new policies
and uses them to secure PDF documents. This chapter explains how to invoke Policy Server using the
Policy Server API.

The Policy Server API is implemented in Java and has public methods that enable you to invoke
Policy Server. Using a Java development environment, you can use the static EDCFactory object to
connect to Policy Server. For information about this object, see the API Reference.

In addition to using the Policy Server API, you must also use standard Java classes. The examples in this
chapter describe how to use the Policy Server API and standard Java classes to invoke Policy Server.

This chapter contains the following information:

Including the API library files
The Policy Server API consists of many JAR files that you must set in your application’s class path. If you do
not reference these JAR files, you cannot use the Policy Server API in your Java project. These JAR files are
installed along with the Policy Server SDK.

Two sets of JAR files are available that you can use. One set is used to create custom applications that
interact with Policy Server deployed on IBM® WebSphere®. The other set is used to create custom
applications that interact with Policy Server deployed on JBoss. You must use the set of JAR files that
correspond to the J2EE application server on which Policy Server is deployed.

● If you are developing for the JBoss version of Policy Server, the JAR files are in this location:

<install directory>/PolicyServer_SDK/sdk/lib/JBoss

● If you are developing for the WebSphere version of Policy Server, the JAR files are in this location:

<install directory>/PolicyServer_SDK/sdk/lib/WebSphere

Topic Description See

Including the API library files Describes the Policy Server API JAR files that must
be added to your Java project.

page 10

Connecting to Policy Server Describes how to establish a connection to
Policy Server.

page 12

Creating Policy Server manager objects Describes how to create Policy Server manager
objects, which are necessary to perform other
tasks such as registering a policy.

page 14

Using an InfomodelObjectFactory
object

Describes how to use the static
InfomodelObjectFactory object.

page 17

Disconnecting from Policy Server Describes how to disconnect from Policy Server. page 17

Adobe LiveCycle Policy Server Invoking Policy Server
Developing Custom Applications Including the API library files 11

JBoss API library files

The following table lists the JAR files that you must include in your application’s class path if Policy Server is
deployed on JBoss:

You must also ensure that your application can access the jar files that are installed in the
<install directory>/PolicyServer_SDK/sdk/lib/JBoss/lib/Endorsed directory. To do this, you can perform
either of the following tasks:

● Copy the contents of the Endorsed directory to the %JAVA_HOME%/jre/lib/endorsed directory.

● Set the system property in your application to point to the location of the files in Endorsed
(-Djava.endorsed.dirs=<location of jar files>).

The Endorsed directory includes these files:

● namespace.jar

● dom3xerceslmpl-2.4.0.jar

● dom3-xml-apis-2.4.0.jar

● xalan.jar

Note: If you are connecting to Policy Server in EJB mode, you also need to add the file
appserver root/client/jbossall-client.jar to your application’s class path, where appserver root is the
application server directory. For more information about EJB mode, see “Connecting to Policy
Server” on page 12.

WebSphere API library files

The following table lists the JAR files that you must include in your application’s class path if Policy Server is
deployed on WebSphere:

asn1.jar axis.jar commons-discovery.jar edc-sdk.jar jaxb-api.jar

jaxb-impl.jar jaxb-libs.jar commons-logging.jar jax-qname.jar jaxrpc.jar

jsafe.jar jsafeJCE.jar log4j.jar wss4j.jar opensaml.jar

saaj.jar sdk-ejb-client.jar relaxngDatatype.jar wsdl4j.jar

xmlsec-1.0.5.jar xsdlib.jar JBossall-client.jar jndi.properties

asn1.jar axis.jar commons-discovery.jar edc-sdk.jar jaxb-api.jar

jaxb-impl.jar jaxb-libs.jar commons-logging.jar jax-qname.jar jaxrpc.jar

jsafe.jar jsafeJCE.jar log4j.jar opensaml.jar

saaj.jar sdk-ejb-client.jar relaxngDatatype.jar wsdl4j.jar

xmlsec-1.0.5.jar xsdlib.jar jndi.properties wss4j.jar

Adobe LiveCycle Policy Server Invoking Policy Server
Developing Custom Applications Adding import statements 12

You must also ensure that your application can access the jar files that are located in the <install
directory>/PolicyServer_SDK/sdk/lib/WebSphere/lib/Endorsed directory. To do this, you can perform
either of the following tasks:

● Copy the contents of the Endorsed directory to the %JAVA_HOME%/jre/lib/endorsed directory.

● Set the system property in your application to point to the location of the files in Endorsed
(-Djava.endorsed.dirs=<location of jar files>).

Note: If you are using WebSphere, the value of the JAVA_HOME environment variable should be the Java
directory that is installed with WebSphere.

This Endorsed directory includes these files:

● namespace.jar

● dom3xerceslmpl-2.4.0.jar

● dom3-xml-apis-2.4.0.jar

● xalan.jar

Adding import statements

The Policy Sever API consists of different packages. You must add the following import statements to your
Java project to successfully use the Policy Server API:

import com.adobe.edc.sdk.*;
import com.adobe.edc.sdk.infomodel.* ;

Note: For information about these Java packages, see the API Reference.

Connecting to Policy Server
A custom application must connect to Policy Server before the application can interact with it. You
connect to Policy Server by using the EDCFactory object’s connect method. This method must be
called from within a try statement.

The connect method requires a Java Properties object as an argument that specifies a value for some
or all of the following properties:

● EDCFactory.USERNAME_PROPERTY_NAME - The user name used to connect

● EDCFactory.PASSWORD_PROPERTY_NAME - The corresponding password

● EDCFactory.MODE_PROPERTY_NAME - The mode used to connect to Policy Server

● EDCFactory.URL_PROPERTY_NAME - The Policy Server URL, required only when using SOAP

Note: EDCFactory defines other properties that require values when using document managers. For more
information, see “Creating a DocumentManager object” on page 15.

The properties belong to the static EDCFactory object. Because this object is static, you do not have to
instantiate it to call the connect method. This method returns a non-static EDCFactory object that you
use to perform other tasks, such as creating Policy Server manager objects. The non-static EDCFactory
object represents a session with Policy Server.

You create a Java Properties object by using its constructor. Call the Properties object’s
setProperty method to assign a value to each property.

Adobe LiveCycle Policy Server Invoking Policy Server
Developing Custom Applications Connecting to Policy Server using SOAP 13

When setting the MODE_PROPERTY_NAME property, you can specify the SOAP mode or the EJB mode. The
performance of the EJB mode is better than the performance of the SOAP mode. As a result, it is
recommended that you use the EJB mode if the custom application and Policy Server are located within
the same firewall. The EJB mode uses the RMI/IIOP protocol. When using the EJB mode on JBoss, you must
include the JBossall-client.jar file in your application’s class path.

However, if a firewall is located between Policy Server and the custom application, it is recommended that
you use the SOAP mode. This mode uses http(s) as the underlying transport and is able to communicate
across firewall boundaries.

Connecting to Policy Server using SOAP

If you use the SOAP mode, set the EDCFactory.URL_PROPERTY_NAME property to

http://<ServerName>:<Port>/edcws/services/EDCPolicyService?wsdl

where ServerName is the name of the J2EE application server on which Policy Server is deployed and
Port is the port that the J2EE application server uses. It is not necessary to set this property if you use the
EJB mode.

The following code example connects to Policy Server using the SOAP mode.

Example 2.1 Connecting to Policy Server using SOAP

// Create a Java Properties object
Properties apsProperty = new Properties();

//Specify property values
apsProperty.setProperty(EDCFactory.USERNAME_PROPERTY_NAME,"<user name>");
apsProperty.setProperty(EDCFactory.PASSWORD_PROPERTY_NAME,"<password>");
apsProperty.setProperty(EDCFactory.URL_PROPERTY_NAME,http://<ServerName>:<Po
rt>/edcws/services/EDCPolicyService?wsdl);
apsProperty.setProperty(EDCFactory.MODE_PROPERTY_NAME,"soap");

try
{

//Establish a connection to Policy Server
EDCFactory apsSession = EDCFactory.connect(apsProperty);
//Perform additional tasks using apsSession

}
catch (Exception ex)

System.out.println("The exception is " +ex.getMessage());

Note: To successfully instantiate a Java Properties object, add the following import statement to your
Java project: import java.util.*.

Connecting to Policy Server using EJB

If you use the EJB mode to connect to Policy Server, it is unnecessary to set the
EDCFactory.URL_PROPERTY_NAME property. However, you must configure the jndi.properties file by
specifying the URL of Policy Server. You must also ensure that this file is referenced in your run-time
environment.

The jndi.properties file is installed along with the JAR files that you must include in your project’s class
path. For information about the location of these files, see the Installing and Configuring guide.

Adobe LiveCycle Policy Server Invoking Policy Server
Developing Custom Applications Creating Policy Server manager objects 14

The following code example connects to Policy Server using the EJB mode.

Example 2.2 Connecting to Policy Server using EJB

// Create a Java Properties object
Properties apsProperty = new Properties();

//Specify property values
apsProperty.setProperty(EDCFactory.USERNAME_PROPERTY_NAME,"<user name>");
apsProperty.setProperty(EDCFactory.PASSWORD_PROPERTY_NAME,"<password>");
apsProperty.setProperty(EDCFactory.MODE_PROPERTY_NAME,"ejb");

try
{

//Establish a connection to Policy Server
EDCFactory apsSession = EDCFactory.connect(apsProperty);
//Perform additional tasks using apsSession

}
catch (Exception ex)

System.out.println("The exception is " +ex.getMessage());

Creating Policy Server manager objects
The Policy Server API contains different interfaces that enable you to manage Policy Server resources. For
example, you can create a PolicyManager object, which is an instance of the PolicyManager
interface, to create and mange policies.

Using a non-static EDCFactory object, you can create the following objects:

● PolicyManager

● DocumentManager

● EventManager

● LicenseManager

● UserManager

● WatermarkManager

Note: You cannot create these objects using a static EDCFactory object. You must use an EDCFactory
object that is returned by the connect method. For information, see “Connecting to Policy Server”
on page 12.

Creating a PolicyManager object

A PolicyManager object can be created by calling the EDCFactory object’s getPolicyManager
method. This method returns an instance of a PolicyManager interface. You use a PolicyManager
object to manage policies. For information about policies, see “Working with Policies” on page 18.

Adobe LiveCycle Policy Server Invoking Policy Server
Developing Custom Applications Creating a DocumentManager object 15

The following code example creates a PolicyManager object.

Example 2.3 Creating a PolicyManager object

//Establish a connection to Policy Server
EDCFactory apsSession = EDCFactory.connect(apsProperty);

//Create a PolicyManager object
PolicyManager apsPolicyManager = apsSession.getPolicyManager();

Creating a DocumentManager object

A DocumentManager object can be created by calling the EDCFactory object’s
getDocumentManager method. You use a DocumentManager object to manage documents. For
information, see “Managing Documents” on page 36.

To successfully create a DocumentManager object, you must set the static EDCFactory object’s
PACKAGER_EXECUTABLE_PATH property prior to calling the connect method. Set this property with
the location of an additional security component.

The following code example creates a DocumentManager object.

Example 2.4 Creating a DocumentManager object

//Establish a connection to Policy Server
apsProperty.setProperty(EDCFactory.PACKAGER_EXECUTABLE_PATH,"path");
EDCFactory apsSession = EDCFactory.connect(apsProperty);

//Create a DocumentManager object
DocumentManager apsDocManager = apsSession.getDocumentManager();

Note: The security component is not part of Policy Server. For information about the security component,
contact Adobe Customer Support.

Creating an EventManager object

An EventManager object can be created by calling the EDCFactory object’s getEventManager
method. You use an EventManager object to work with events that are supported by Policy Server. For
information, see “Registering Event Handlers” on page 52.

The following code example creates an EventManager object.

Example 2.5 Creating an EventManager object

//Establish a connection to Policy Server
EDCFactory apsSession = EDCFactory.connect(apsProperty);

//Create an EventManager object
EventManager apsEventManager = apsSession.getEventManager();

Adobe LiveCycle Policy Server Invoking Policy Server
Developing Custom Applications Creating a LicenseManager object 16

Creating a LicenseManager object

A LicenseManager object can be created by calling the EDCFactory object’s getLicenseManager
method. You use a LicenseManager object to manage Policy Server licenses. For example, using a
LicenseManager object, you can revoke a license from a policy-protected document, resulting in the
document being inaccessible. For information, see “Revoking documents” on page 39.

The following code example creates a LicenseManager object.

Example 2.6 Creating a LicenseManager object

//Establish a connection to Policy Server
EDCFactory apsSession = EDCFactory.connect(apsProperty);

//Create a LicenseManager object
LicenseManager apsLicenseManager = apsSession.getLicenseManager();

Creating a UserManager object

A UserManager object can be created by calling the EDCFactory object’s getUserManager method.
You use a UserManager object to manage Policy Server external users. For information, see “Working
with Policy Server Principals” on page 33.

The following code example creates a UserManager object.

Example 2.7 Creating a UserManager object

//Establish a connection to Policy Server
EDCFactory apsSession = EDCFactory.connect(apsProperty);

//Create a UserManager object
UserManager apsUserManager = apsSession.getUserManager();

Creating a WatermarkManager object

A WatermarkManager object can be created by calling the EDCFactory object’s
getWatermarkManager method. You use a WatermarkManager object to work with watermarks. For
example, you can insert a watermark into a document and set the text. For information, see “Working with
Watermarks” on page 44.

The following code example creates a WatermarkManager object.

Example 2.8 Creating a WatermarkManager object

//Establish a connection to Policy Server
EDCFactory apsSession = EDCFactory.connect(apsProperty);

// Create a WatermarkManager object
WatermarkManager apsWatermarkManager = apsSession.getWatermarkManager();

Adobe LiveCycle Policy Server Invoking Policy Server
Developing Custom Applications Working with InfomodelObjectFactory objects 17

Working with InfomodelObjectFactory objects
You use an InfomodelObjectFactory object to create Policy Server objects. Using this object, you can
perform the following tasks:

● Create a Policy object

● Create a License object.

● Create a Permission object

● Create a PolicyEntry object

● Create a ValidityPeriod object

● Create a Watermark object

● Create a special Principal object

An InfomodelObjectFactory object is a static object and as a result, you do not have to instantiate it.
Other sections of this guide discuss how to use an InfoModelObjectFactory object to perform tasks
such as creating a Policy object. For information, see “Creating a Policy object” on page 19.

Disconnecting from Policy Server
You can close a connection to Policy Server by calling the EDCFactory object’s closeConnection
method. Once you call this method, your application cannot interact with Policy Server. To interact with
Policy Server, you must connect to it. For information, see “Connecting to Policy Server” on page 12.

If an application has more than one EDCFacotry object that represents a connection to Policy Server,
calling closeConnection from one EDCFactory object will not affect another connection. You must
call closeConnection for each EDCFactory object that is connected to Policy Server.

 18

3 Working with Policies

This chapter explains how you can use the Policy Server API to create and maintain security policies that
belong to Policy Server. A policy is a collection of information that includes document security settings,
authorized users, and usage rights. You can create and save any number of policies, using security settings
appropriate for different situations and users. Policies enable you to perform these tasks:

● Specify who can open the document. Recipients can either belong or be external to your organization.

● Specify how recipients can use the document. You can restrict access to different Acrobat and Adobe
Reader features, including the ability to print and copy text, make changes, and add signatures and
comments to a document.

● Change the access and security settings at any time, even after you distribute the policy-protected
document.

● Monitor the use of the document after you distribute it. You can see how the document is being used
and who is using it. For example, you can find out when somebody has opened the document.

There are three Policy Server APIs you use to work with policies. These are Policy, PolicyEntry, and
PolicyManager. This chapter discusses how to create PolicyEntry and Policy objects. For
information about creating a PolicyManager object, see “Creating a PolicyManager object” on page 14.

This chapter contains the following information:

Creating policies
To create a policy, perform the following tasks:

● Create a Policy object by calling the InfomodelObjectFactory object’s createPolicy method.

● Set the policy’s attributes. For information, see “Setting policy attributes” on page 20.

● Create a policy entry. For information, see “Working with policy entries” on page 24.

● Register the policy. For information, see “Registering policies” on page 29.

Topic Description See

Creating policies Describes how to create new policies. page 18

Setting policy attributes Describes how to use a Policy object to set policy attributes. page 20

Working with policy entries Describes how use a PolicyEntry object to set security and
user information.

page 24

Managing policies Describes how to use a PolicyManager object to manage
policies.

page 28

Querying policy information Describes how to retrieve information about a policy, such as
its name.

page 32

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Creating a Policy object 19

Creating a Policy object
You create a new policy by calling the InfomodelObjectFactory object’s createPolicy method.
This method returns a Policy object. For information about an InfomodelObjectFactory object, see
“Working with InfomodelObjectFactory objects” on page 17.

The createPolicy method has two versions:

● createPolicy()

● createPolicy(byte[] xmlAsBytes)

The first version creates a Policy object that does not have policy attributes set. Using methods that
belong to the Policy object, such as the setName method, you can set policy attributes. For information,
see “Setting policy attributes” on page 20.

The second version creates a Policy object that is based on a Portable Document Rights Language
(PDRL) XML file. If you use this version of createPolicy, you must convert an existing PDRL file into a
byte array and pass it to createPolicy. For information about PDRL, contact Adobe Customer Support.

You can view a policy as a PDRL XML file by calling the Policy object’s toXML method. This method
returns a byte array representing the policy. You can then perform stream operations on the byte array,
such as saving the byte array as a PDRL XML file. For information about this method, see the API Reference.

You can create a Policy object by calling the InfomodelObjectFactory object’s createPolicy
method. The following code example creates a Policy object.

Example 3.1 Creating a Policy object

Policy myPolicy = InfomodelObjectFactory.createPolicy();

Creating a Policy object based on a PDRL XML file
You can create a Policy object by passing a byte array representing a PDRL file to the
InfomodelObjectFactory object’s createPolicy method. The policy’s attributes are defined by the
values in the PDRL file. Using the Policy object’s methods, you can modify the attributes. For example, you
can change the policy’s owner. For information, see “Changing the owner of a policy” on page 30.

The following code example creates a Policy object that is based on a PDRL XML file named
SamplePolicy.xml.

Example 3.2 Creating a Policy object based on a PDRL XML file

//Create an InputStream object using a FileInputStream constructor
InputStream xmlPolicyFile = new FileInputStream("C:\\SamplePolicy.xml");

//Get the size of the InputStream object
int bufSize = xmlPolicyFile.available();

//Create a byte array and allocate bufSize bytes
byte[] policyArray = new byte[bufSize];

//Populate the byte array
xmlPolicyFile.read(policyArray);

//Call createPolicy and pass the byte array
Policy mySamplePolicy = InfomodelObjectFactory.createPolicy(policyArray);

Caution: If the schema of the PDRL XML file is invalid, an exception is thrown.

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Setting policy attributes 20

Setting policy attributes
You can use the Policy object to set policy attributes. For example, you can define the name of a policy
by calling the Policy object’s setName method. Using this object, you can set the following policy
attributes:

● Offline lease period

● Plain text metadata

● Description

● Name

● Event tracking

● Validity period

● Alternative Id

● Watermark Id

● EncryptAttachmentsOnly

Note: The name attribute must be set. Even though the other attributes are optional, it is recommended
that you set them to meet your business requirements.

Setting a document’s offline lease period

The offline lease period defines the number of days a recipient can take the document offline (use
it without an active Internet or network connection). To continue using the document, the recipient must
synchronize the document with Policy Server by opening it online.

Set this attribute by calling the Policy object’s setOfflineLeasePeriod method and specifying the
number of days. The following code example sets the offline lease period to five days.

Example 3.3 Setting a document’s offline lease period

//Create a policy
Policy myPolicy = InfomodelObjectFactory.createPolicy();

//Set the offline lease period to 5 days
myPolicy.setOfflineLeasePeriod(5);

Setting a document’s metadata

Metadata is information about the document and can be viewed through the Properties dialog box or the
Acrobat Advanced menu. You can determine whether a policy enables a recipient to view metadata by
calling the Policy object’s isPlaintextMetadata method. This method requires a boolean value that
indicates whether a recipient can view metadata.

If you set the setEncryptAttachmentsOnly attribute to true, you must also set this attribute to
true. For information, see “Setting the EncryptAttachmentsOnly attribute” on page 23.

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Setting a policy’s name and description 21

The following code example enables a recipient to view metadata.

Example 3.4 Setting a document’s metadata

//Create a policy
Policy myPolicy = InfomodelObjectFactory.createPolicy();

//Enable a user to view metadata
myPolicy.setPlaintextMetadata(true);

Note: Once a policy is registered with Policy Server, this attribute cannot be changed. For information, see
“Registering policies” on page 29.

Setting a policy’s name and description

A policy’s name and description can be defined by using the Policy object’s setName and
setDescription methods. The setName method requires a string value that uniquely identifies the
policy, and the setDescription method requires a string value that describes the policy. Policy names
must be unique among each user. There can be two policy names with the same name provided that the
policy name belongs to two separate users. However, a single user cannot have the same policy name.

Note: Policies must have a name defined.

The following code example sets the policy’s name and description.

Example 3.5 Setting a policy’s name and description

//Create a policy
Policy myPolicy = InfomodelObjectFactory.createPolicy();

//Set the policy name and description
myPolicy.setName("Policy2004");
myPolicy.setDescription("This policy belongs to Adobe Policy Server");

Setting a document’s event tracking

Using the Policy Server API, you can enable or disable tracking of events associated with a
policy-protected document. For example, events such as viewing or copying of a document can be
tracked. Tracked events appear in the list on the Events page. For information about the Events page, see
the Installing and Configuring guide.

You can enable event tracking by calling the Policy object’s setTracked method and specifying true.
The following code example enables event tracking.

Example 3.6 Setting a document’s event tracking

//Create a policy
Policy myPolicy = InfomodelObjectFactory.createPolicy();

//Enable event tracking
myPolicy.setTracked(true);

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Setting a policy’s validity period 22

Setting a policy’s validity period
A validity period is the time period during which a policy-protected document is accessible to authorized
recipients. A validity period can be set to one of these options:

● A set number of days that the document is accessible from the time which the document is published

● An end date after which the document is not accessible

● A specific date range for which the document is accessible

● Always valid

Before you can set a policy’s validity date, you must create a ValidityPeriod object by calling the
InfomodelObjectFactory object’s createValidityPeriod method. This method returns an
object instance based on the ValidityPeriod interface.

You define the validity period by calling one of two methods that belong to the ValidityPeriod object.
The setRelativeExpirationDays method sets the validity period to be a relative number of days.
You can specify an integer value that defines the number of days.

The ValidityPeriod object’s setAbsoluteValidityPeriod method creates a date range for which
the policy is valid. This method requires a Java Calendar object that represents a start date and another
Java Calendar object that represents the end date. The policy is valid within the date range.

You can specify just a start date, which results in the policy being valid after the start date. If you specify
just a end date, the policy is valid until the end date. However, an exception is thrown if both a start date
and an end date are not defined.

After you create a ValidityPeriod object, you can set a policy’s validity period by calling the Policy
object’s setValidityPeriod method and passing the ValidityPeriod object. The following code
example creates an absolute validity period with a date range of a week.

Example 3.7 Setting a policy’s validity period

//Create a policy
Policy myPolicy = InfomodelObjectFactory.createPolicy();

// Create a Calendar object...
Calendar myCalendar = Calendar.getInstance();
myCalendar.setTimeZone(TimeZone.getTimeZone("America/Los_Angeles"));
myCalendar.set(Calendar.DAY_OF_WEEK, Calendar.SUNDAY);
myCalendar.set(Calendar.HOUR_OF_DAY, 21);
myCalendar.clear(Calendar.MINUTE);
myCalendar.clear(Calendar.SECOND);
myCalendar.clear(Calendar.MILLISECOND);

//Set a validity period from now to 9pm Pacific Time next Sunday
ValidityPeriod vp = InfomodelObjectFactory.createValidityPeriod();
myCalendar.add(Calendar.WEEK_OF_YEAR, 1);
vp.setAbsoluteValidityPeriod(Calendar.getInstance(), myCalendar);
myPolicy.setValidityPeriod(vp);

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Setting a policy’s alternative identifier 23

Setting a policy’s alternative identifier

You use the Policy object’s setAlternateId method to set an alternative identifier for a policy. This
method requires a string value that represents the alternative identifier. The default format of a policy
identifier is similar to the format of a Universal Unique Identifier (UUID). For example, the following
represents a policy identifier:

1EBE43F3-382E-F6DA-0F3B-7BB001209966

It is easier to use a policy’s alternative identifier value instead of using its default identifier value. You can
set a policy’s identifier with a value that describes the policy. For example, assume that a policy is valid
until the end of a month. You can set the alternative identifier as Sept2004. The only restrictions are that an
identifier cannot exceed 255 characters or have a duplicate value. An alternative identifier value must be
unique.

The following code example sets a policy’s alternative identifier to Sept2004.

Example 3.8 Setting a policy’s alternative Id

//Create a policy
Policy myPolicy = InfomodelObjectFactory.createPolicy();

//Set an alternative Id
myPolicy.setAlternateId("Sept2004");

Setting a policy’s watermark

You can specify a watermark to add to the pages of a document. Watermarks help ensure the security of a
document by uniquely identifying the document and controlling copyright infringement. To specify a
watermark, call the Policy object’s setWatermarkId method and pass a string value that represents
the watermark’s identifier.

To get the watermark’s identifier, create a Watermark object and call its getId method. For information
about creating a Watermark object, see “Creating a Watermark object” on page 44.

The following code example sets a policy’s watermark (assume that a Watermark object is named
myWatermark).

Example 3.9 Setting a policy’s watermark

//Create a policy
Policy myPolicy = InfomodelObjectFactory.createPolicy();

// Set the policy’s watermark
myPolicy.setWatermarkId(myWatermark.getId());

Setting the EncryptAttachmentsOnly attribute

You use the Policy object’s setEncryptAttachmentsOnly method to specify whether only
document attachments are encrypted or both the document content and the attachment are encrypted. If
only the attachment is encrypted, the policy protects only document attachments, not the document. By
default, both the document and the attachments are protected by the policy.

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Working with policy entries 24

The following code example sets this attribute to true, which results in only the attachment being
encrypted (the default is false).

Example 3.10 Setting the EncryptAttachmentsOnly attribute

//Create a policy
Policy myPolicy = InfomodelObjectFactory.createPolicy();

// Set the EncryptAttachmentsOnly attribute
myPolicy.setEncryptAttachmentsOnly(true);

Note: Once a policy is registered with Policy Server, this attribute cannot be changed. For information, see
“Registering policies” on page 29.

Working with policy entries
A policy entry attaches principals, which are groups and users, and permissions to a policy. If you do not
create a policy entry, a policy will not have permissions or users associated with it. For example, assume
that you perform these tasks:

● Create a policy entry that enables a group to only view a document while online and prohibits
recipients from copying it.

● Attach the policy entry to the policy.

● Secure a document with the policy. For information, see “Creating a policy-protected document” on
page 37.

These actions result in recipients only being able to view the document online and not being able to copy
it. The document remains secure until security is removed from it. For information, see “Removing policy
security from a document” on page 38.

➤ To create a policy entry

1. Create a PolicyEntry object. For information, see “Creating a PolicyEntry object” on page 24.

2. Set the policy entry’s permissions. Policy entries must include at least one permission. For information,
see “Adding permissions to a policy entry” on page 25.

3. Set the policy entry’s principal. Policy entries must include only one principal. For information, see
“Adding a principal to a policy entry” on page 26.

4. Attach the policy entry to a policy. For information, see “Attaching a policy entry to a policy” on
page 27.

Creating a PolicyEntry object

A policy entry is created by calling the InfomodelObjectFactory object’s createPolicyEntry. This
method returns an object instance of the PolicyEntry interface. The following code example creates a
PolicyEntry object.

Example 3.11 Creating a PolicyEntry object

//Create a PolicyEntry object
PolicyEntry myPolicyEntry = InfomodelObjectFactory.createPolicyEntry();

Note: You can specify the validity period of a policy entry by calling the PolicyEntry object’s
setValidityPeriod and passing a ValidityPeriod object. For information about creating a
ValidityPeriod object, see “Setting a policy’s validity period” on page 22.

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Working with permissions 25

Working with permissions

You can use a PolicyEntry object to perform the following permission tasks:

● Add permissions to a policy entry

● Retrieve permissions from a policy entry

● Remove a specific permission

● Remove all permissions

Adding permissions to a policy entry

You can add permissions to a policy entry by using the PolicyEntry object’s addPermission method.
However, before you call this method, create a Permission object by calling the
InfomodelObjectFactory object’s createPermission method. This method returns an object
instance of the Permission interface.

A Permission object consists of field values that define permissions. For example, the OPEN_ONLINE
field enables a recipient to open a document while online. For a complete list of all fields that belong to
the Permission interface, see the API Reference.

When you call the createPermission method, pass a static Permission object and specify a field that
corresponds to a constant value specifying the permission. For example, to enable a recipient to open a
document while online, pass Permission.OPEN_ONLINE. Call createPermission for each
permission you want to add to a policy entry.

To add a permission to a policy entry, call the PolicyEntry object’s addPermission method and pass
a Permission object. Call addPermission for each permission you want to add to a policy entry.

The following code example adds the open online and copy permissions to a policy entry.

Example 3.12 Adding permissions to a policy entry

//Create a PolicyEntry object
PolicyEntry myPolicyEntry = InfomodelObjectFactory.createPolicyEntry();

//Create Permission objects
Permission onlinePermission =
InfomodelObjectFactory.createPermission(Permission.OPEN_ONLINE) ;
Permission copyPermission =
InfomodelObjectFactory.createPermission(Permission.COPY);

//Add permissions to the policy entry
myPolicyEntry.addPermission(onlinePermission);
myPolicyEntry.addPermission(copyPermission);

Note: A policy entry must have at least one permission added. The OPEN_ONLINE permission should
always be added to ensure that a document can be opened online.

Retrieving permissions from a policy entry

You can retrieve all permissions that are associated with a policy entry by calling the PolicyEntry
object’s getPermissions method. This method returns a Java List object, where each element is a
Permission object. You can iterate through the List object to retrieve permissions.

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Working with policy principals 26

The following code example retrieves all permissions from a PolicyEntry object.

Example 3.13 Retrieving permissions from a policy entry

//Get all permissions associated with this policy entry object
List allPermissions = myPolicyEntry.getPermissions();

//Iterate through the list and display the name of each permission
Iterator it = allPermissions.iterator();
while (it.hasNext())
{

Permission myPermission = (Permission) it.next();
System.out.println("The name of the permission is

"+myPermission.getName());
}

Removing a specific permission from a policy entry

You can remove a specific permission from a policy entry by calling the PolicyEntry object’s
removePermission method. You must pass a Permission object that represents the permission to
remove. The following code example removes a permission associated with the copyPermission object.

Example 3.14 Removing a specific permission from a policy entry

myPolicyEntry.removePermission(copyPermission);

Note: The copyPermission object was added to a PolicyEntry object in a previous code example.
For information, see “Adding permissions to a policy entry” on page 25.

Removing all permissions from a policy entry

You can remove all permissions from a policy entry by calling the PolicyEntry object’s
clearPermissions method. After you call this method, the policy entry does not contain any
permissions. The following code example removes all permission from a policy entry.

Example 3.15 Removing all permissions from a policy entry

myPolicyEntry.clearPermissions();

Working with policy principals

You can use a PolicyEntry object to perform the following principal tasks:

● Add a principal to a policy entry

● Retrieve a principal from a policy entry

● Remove principals

Adding a principal to a policy entry

You can add a principal to a policy entry by using the PolicyEntry object’s setPrincipal method.
However, before you call this method, create a Principal object by calling the
InfomodelObjectFactory object’s createSpecialPrincipal method. This method returns an
object instance of the Principal interface. For information about creating a Principal object, see
“Creating a special principal object” on page 33.

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Attaching a policy entry to a policy 27

To add a principal to a policy entry, call the PolicyEntry object’s setPrincipal method and pass a
Principal object. The following code example adds the publisher of the document (publisher principal)
to a policy entry.

Example 3.16 Adding a principal to a policy entry

//Create a PolicyEntry object
PolicyEntry myPolicyEntry = InfomodelObjectFactory.createPolicyEntry();

//Create principal object
Principal publisherPrincipal =
InfomodelObjectFactory.createSpecialPrincipal(InfomodelObjectFactory.PUBLISH
ER_PRINCIPAL);

//Add a principal object to the policy entry
myPolicyEntry.setPrincipal(publisherPrincipal);

Note: There must be only one principal added to a policy entry. It is strongly recommend that a policy
entry with the publisher principal be added to a policy so that the publisher has permission to view
documents secured with the policy.

Retrieving a principal associated with a policy entry

You can retrieve a principal that is associated with a policy entry by calling the PolicyEntry object’s
getPrincipal method. This method returns a Principal object or null if a principal does not exist.
The following code example retrieves a principal.

Example 3.17 Retrieving a principal from a policy entry

//Get a principal object from a policy entry
Principal myPrincipal = myPolicyEntry.getPrincipal();
If (myPrincipal == null)

System.out.println("There is no principal associated with this policy
entry");

Removing a principal

You can remove a principal from a policy entry by calling the PolicyEntry object’s clearPrincipal
method. After you call this method, the policy entry does not contain a principal. The following code
example removes a principal from a policy entry.

Example 3.18 Removing a principal from a policy entry

myPolicyEntry.clearPrincipal();

Attaching a policy entry to a policy

A policy entry can be attached to a policy after permission and principal values are defined. To attach a
policy entry to a policy, call the Policy object’s attachPolicyEntry method and pass a
PolicyEntry object. Before calling this method, ensure that a PolicyEntry object exists. For
information, see “Creating a PolicyEntry object” on page 24.

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Managing policies 28

The following code example shows how to attach a policy entry to a policy.

Example 3.19 Attaching a policy entry to a policy

//Create a PolicyEntry object
PolicyEntry myPolicyEntry = InfomodelObjectFactory.createPolicyEntry();

//Create Permission objects
Permission onlinePermission =
InfomodelObjectFactory.createPermission(Permission.OPEN_ONLINE) ;
Permission copyPermission =
InfomodelObjectFactory.createPermission(Permission.COPY) ;

//Add permissions to the policy entry
myPolicyEntry.addPermission(onlinePermission);
myPolicyEntry.addPermission(copyPermission);

//Create principal object
Principal publisherPrincipal =
InfomodelObjectFactory.createSpecialPrincipal(InfomodelObjectFactory.PUBLISH
ER_PRINCIPAL);

//Add a principal object to the policy entry
myPolicyEntry.setPrincipal(publisherPrincipal);

//Attach the policy editor to the policy
myPolicy.addPolicyEntry(myPolicyEntry);

Note: You can remove all policy entries from a policy by calling the Policy object’s
clearPolicyEntries method.

Managing policies
You can manage a policy by using a PolicyManager object. Using this object, you can perform the
following tasks:

● Register a policy

● Retrieve a policy

● Search for one or more policies

● Update a policy

● Change the owner of a policy

● Delete a policy

Note: In the following code examples, the name of the PolicyManager object is apsPolicyManager.
For information about creating this object, see “Creating a PolicyManager object” on page 14.

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Registering policies 29

Registering policies

A policy must be registered with Policy Server before it can be used. Register a policy after setting its
attributes, permissions, and principal values. For information about the tasks to complete before
registering a policy, see “Creating policies” on page 18.

You register a policy by calling the PolicyManager object’s registerPolicy method and passing a
Policy object that represents the policy to register. The following code example shows how to register a
policy with Policy Server.

Example 3.20 Registering a policy

//Create a PolicyEntry object
PolicyEntry myPolicyEntry = InfomodelObjectFactory.createPolicyEntry();

//Create Permission objects
Permission onlinePermission =
InfomodelObjectFactory.createPermission(Permission.OPEN_ONLINE) ;
Permission copyPermission =
InfomodelObjectFactory.createPermission(Permission.COPY);

//Add permissions to the policy entry
myPolicyEntry.addPermission(onlinePermission);
myPolicyEntry.addPermission(copyPermission);

//Create principal object
Principal publisherPrincipal =
InfomodelObjectFactory.createSpecialPrincipal(
InfomodelObjectFactory.PUBLISHER_PRINCIPAL);

//Add a principal object to the policy entry
myPolicyEntry.setPrincipal(publisherPrincipal);

//Attach the policy editor to the policy
myPolicy.addPolicyEntry(myPolicyEntry);

//Register the policy with Policy Server
String policyId = apsPolicyManager.registerPolicy(myPolicy);

Note: If you attempt to register the same policy twice, an exception is thrown.

Retrieving existing policies

You retrieve existing policies from Policy Server by calling the PolicyManager object’s getPolicies
method. This method returns an array of Policy objects. Before calling this method, create a
PolicySearchFilter object by using its public constructor. This object acts as a policy filter that
enables you to define search criteria.

You define the search criteria by calling methods that belong to the PolicySearchFilter object. For
example, you can call the PolicySearchFilter object’s setOwner method to return all policies that
have a specific owner. You can create a PolicySearchFilter object and pass it to getPolicies
without defining search criteria. In this situation, all policies are returned.

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Retrieving a specific policy 30

The following code example retrieves the first ten policies from Policy Server.

Example 3.21 Retrieving multiple policies

//Create a PolicySearchFilter object
PolicySearchFilter sf = new PolicySearchFilter() ;

//Get the first ten policies
Policy [] allPolicies = apsPolicyManager.getPolicies(sf,10);

//Iterate through the Policy array and get policy names
for (int zz = 0; zz< allPolicies.length; zz++)
{

Policy myPolicy = (Policy)allPolicies[zz] ;
System.out.println("The policy name is "+myPolicy.getName());

}

Note: An empty search filter returns all policies (up to the max) that the user has access to.

Retrieving a specific policy

You can retrieve a specific policy from Policy Server by calling the PolicyManager object’s getPolicy
method and passing the Id of the policy to retrieve. This method returns a Policy object that
corresponds to the Id value. If no policies have the specified Id value, this method throws an SDKException.

You can call the Policy object’s getId method to get an Id of a policy. For information about this
method, see the API Reference.

The following code example retrieves a policy that corresponds to the policy that has an Id value of
1EBE43F3-382E-F6DA-0F3B-7BB001209966.

Example 3.22 Retrieving a specific policy

//Create a PolicyManager object
PolicyManager apsPolicyManager = apsSession.getPolicyManager();

//Get a policy that corresponds to 1EBE43F3-382E-F6DA-0F3B-7BB001209966
Policy myPolicy =
apsPolicyManager.getPolicy("1EBE43F3-382E-F6DA-0F3B-7BB001209966");

Note: If you want to retrieve a policy by its alternative identifier, use the PolicyManager object’s
getPolicyByAlternateId method. For information about an alternative identifier, see “Setting
a policy’s alternative identifier” on page 23.

Changing the owner of a policy

You can change the owner of a policy by calling the PolicyManager object’s changePolicyOwner
method. This method requires the policy Id and a Principal object that represents the new owner as
arguments. If Policy Server does not recognize either the new policy Id or the principal, an exception is
thrown.

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Updating policies 31

You cannot change the owner to a special principal that you created. The Principal object that you
specify must be based on a user and must already exist. For information about retrieving an existing user,
see Retrieving users. For information about special principals, see Creating a special principal object.

Note: If a policy includes permissions for the special principal of type PUBLISHER_PRINCIPAL, the policy
owner inherits the permissions set for that special principal.

The following code example changes a policy’s owner.

Example 3.23 Changing the owner of a policy

//Create a PolicyManager object
PolicyManager apsPolicyManager = apsSession.getPolicyManager();

//Change the policy owner to newPrincipal
apsPolicyManager.changePolicyOwner("1EBE43F3-382E-F6DA-0F3B-7BB001209966",
newPrincipal);

Updating policies

You can update an existing policy at any time. To make changes to an existing policy, you retrieve it,
modify it, and then update the policy on the server.

For example, assume that you retrieve an existing policy by calling the getPolicy method and
modifying its validity period. Before the change takes effect, you must update the policy by calling the
PolicyManager object’s updatePolicy method and passing the Policy object that represents the
modified policy. For information about a validity period, see “Setting a policy’s validity period” on page 22.

The following code example retrieves a policy, modifies its validity period, and then updates it.

Example 3.24 Updating a policy

//Get a policy
Policy myPolicy =
apsPolicyManager.getPolicy("1EBE43F3-382E-F6DA-0F3B-7BB001209966");

// Create a Calendar object...
Calendar myCalendar = Calendar.getInstance();
myCalendar.setTimeZone(TimeZone.getTimeZone("America/Los_Angeles"));
myCalendar.set(Calendar.DAY_OF_WEEK, Calendar.SUNDAY);
myCalendar.set(Calendar.HOUR_OF_DAY, 21);
myCalendar.clear(Calendar.MINUTE);
myCalendar.clear(Calendar.SECOND);
myCalendar.clear(Calendar.MILLISECOND);

//Change the validity period from now to 9pm Pacific Time next Sunday
ValidityPeriod vp = InfomodelObjectFactory.createValidityPeriod();
myCalendar.add(Calendar.WEEK_OF_YEAR, 1);
vp.setAbsoluteValidityPeriod(Calendar.getInstance(), myCalendar);
myPolicy.setValidityPeriod(vp);

//Update the policy
apsPolicyManager.updatePolicy(myPolicy);

Adobe LiveCycle Policy Server Working with Policies
Developing Custom Applications Deleting Policies 32

Deleting Policies

You can delete a policy by calling the PolicyManager object’s deletePolicy method and passing a
Policy Id that identifies the policy to delete.

After the policy is deleted, it can no longer be applied to new documents. However, the policy is still
applicable to existing documents that are using it.

If Policy Server does not recognize the specified Id or if the user connected to Policy Server is not
authorized to delete a policy, an exception is thrown. The following code example deletes a policy.

Example 3.25 Deleting a policy

//Create a PolicyManager object
PolicyManager apsPolicyManager = apsSession.getPolicyManager();

//Delete the policy that corresponds to "1EBE43F3-382E-F6DA-0F3B-7BB001209966
apsPolicyManager.deletetPolicy("1EBE43F3-382E-F6DA-0F3B-7BB001209966");

Tip: If you only know the alternate identification of the policy you want to delete, you can retrieve the
associated policy object using the alternate identification, and then use the object to retrieve the
policy identification. You cannot delete a policy by using its alternate identification.

Querying policy information
You can use the methods that belong to the Policy object to retrieve policy information. For example,
you can call the Policy object’s getName method to determine the policy name. For a complete list of all
the methods you can use to retrieve policy information, see the API Reference.

 33

4 Working with Policy Server Principals

This chapter explains how to use the Policy Server API to create and manage special principals. A principal
can either be a user or a group, and a special principal is a system-defined principal that cannot be
modified or updated.

The two Policy Server APIs that you use to work with principals are Principal and UserManager. The
chapter explains how to create a Principal object. For information about creating a UserManager
object, see “Creating a UserManager object” on page 16.

This chapter contains the following information:

Creating a special principal object
You create a Principal object by calling the InfomodelObjectFactory object’s
createSpecialPrincipal method. This method returns an object instance of the Principal
interface that represents a special principal. A special principal has limited functionality compared to a
regular principal. For example, a special principal cannot own a policy. For information, see “Changing the
owner of a policy” on page 30.

When you call createSpecialPrincipal, you must specify a principal field value that belongs to the
static InfomodelObjectFactory object. For example, this object has a field named
PUBLISHER_PRINCIPAL that sets the principal to a publisher principal. For information about
InfomodelObjectFactory fields, see the API Reference.

You create a Principal object when you want to attach a principal to a policy entry. For information, see
“Adding a principal to a policy entry” on page 26.

A regular principal cannot be created using a InfomodelObjectFactory object. That is, you cannot
create a user or a group. However, you can retrieve existing users or groups. For information, see
“Retrieving existing principals” on page 34.

The following code example creates a Principal object that represents a special principal.

Example 4.1 Creating a principal object

//Create principal object
Principal publisherPrincipal =
InfomodelObjectFactory.createSpecialPrincipal(
InfomodelObjectFactory.PUBLISHER_PRINCIPAL);

Topic Description See

Creating a principal object Describes how to create a Principal object. page 33

Retrieving existing principals Describes how to retrieve existing principals. You can retrieve
existing groups and users.

page 34

Querying principal information Describes how to retrieve principal information. For example,
you can determine whether a principal is a group or user.

page 35

Adobe LiveCycle Policy Server Working with Policy Server Principals
Developing Custom Applications Retrieving existing principals 34

Retrieving existing principals
You can retrieve the following existing principal types from Policy Server: groups and users. To retrieve
either type, you use a PrincipalSearchFilter object. You create this object by using its public
constructor. This object acts as a principal filter that enables you to define search criteria by calling its
methods. For example, you call the PrincipalSearchFilter object’s setEmail method to search for
principals that have the full or the partial specified email value. For information about the
PrincipalSearchFilter object’s methods, see the API Reference.

Retrieving groups

You retrieve existing Policy Server groups by calling the UserManager object’s getGroups method. This
method requires a PrincipalSearchFilter object that defines the search criteria and an integer
value that specifies how many groups to return. It returns an array of Principal objects that conform to
the search criteria.

The following code returns up to 20 Policy Server groups that have a domain value of myDomain.com
(this domain is a sample that is used for this code example). The domain value is specified by calling the
PrincipalSearchFilter object’s setDomainName method.

Example 4.2 Retrieving Policy Server groups

//Create a PrincipalSearchFilter object
PrincipalSearchFilter principalSearch = new PrincipalSearchFilter();

//Define the search criteria
principalSearch.setDomainName("myDomain.com");

//Get Policy Server groups
Principal [] allPrincipals = apsUserManager.getGroups(principalSearch,20);

//Iterate through the Principal array
for (int zz=0; zz<allPrincipals.length;zz++)
{

Principal myPrincipal = (Principal)allPrincipals[zz];
System.out.println("The name of the group is " +myPrincipal.getFullName());

}

Retrieving users

You retrieve existing Policy Server users by calling the UserManager object’s getUsers method. This
method requires a PrincipalSearchFilter object that defines the search criteria and an integer
value that specifies how many users to return. It returns an array of Principal objects that conform to
the search criteria.

Adobe LiveCycle Policy Server Working with Policy Server Principals
Developing Custom Applications Querying principal information 35

The following code example returns a user that has the user name Tony Blue and displays the user’s email
address. This search criteria is defined by calling the PrincipalSearchFilter object’s setFullName
method.

Example 4.3 Retrieving Policy Server groups

//Create a PrincipalSearchFilter object
PrincipalSearchFilter principalSearch = new PrincipalSearchFilter();

//Define the search criteria
principalSearch.setFullName("Tony Blue");

//Get an Policy Server user with the user name Tony Blue
Principal [] allPrincipals = apsUserManager.getUsers(principalSearch,10);

//Iterate through the Principal array
for (int zz=0; zz<allPrincipals.length;zz++)
{

Principal myPrincipal = (Principal)allPrincipals[zz];
System.out.println("The user's email is " +myPrincipal.getEmailAddress());

}

Querying principal information
You can use the methods that belong to the Principal object to retrieve principal information. For
example, you can call the Principal object’s getType method to determine if a principal type is a
group or user. For a complete list of all the methods that you can use to retrieve principal information, see
the API Reference.

 36

5 Managing Documents

This chapter explains how to use the Policy Server API to control access to and manage policy-protected
documents. Using the Policy Server API, you can programmatically perform these tasks:

● Secure a PDF document with an existing policy.

● Switch the policy that is attached to a PDF document (you can only attach one policy at a time to a
document). Users who apply policies to documents can switch the policies, provided they created the
policy or the policy is an organizational one that enables this capability for the user who applies it.

● Revoke and reinstate the ability to access a policy-protected document. Administrators can revoke and
reinstate access to any PDF document. Users can revoke access to their policy-protected documents if
the documents are protected by policies they created or by organizational policies that permit this
capability for the user who applies the policy.

Note: The first two tasks listed above require that your application can access an additional security
component. Policy Server does not include this component. For information about obtaining the
security component, contact Adobe Customer Support.

The two main Policy Server APIs that you use to manage documents are the DocumentManager and
LicenseManager interfaces. You also use the License interface to perform other tasks related to
managing documents. For example, using a License object, you retrieve an Id of a license, which is then
used to revoke a document.

This chapter contains the following information:

Securing documents with policies
The DocumentManager interface enables you to secure a PDF document with an existing policy, remove
security from a policy-protected document, and obtain a license from a policy-protected document.
Before you can perform any of these tasks, you must create a DocumentManager object. For information,
see “Creating a DocumentManager object” on page 15.

Topic Description See

Securing documents Describes how to secure PDF documents with existing
policies.

page 36

Revoking and reinstating documents Describes how to revoke and reinstate PDF document
access capabilities.

page 39

Managing licenses Describes how to manage licenses applied to policies. page 40

Querying license information Describes how to retrieve license information, such as a
license Id.

page 43

Adobe LiveCycle Policy Server Managing Documents
Developing Custom Applications Creating a policy-protected document 37

Creating a policy-protected document

You use the DocumentManager object’s installDocumentSecurity method to secure a document
with a policy. This method requires the following arguments:

● A Java File object that represents the document to secure.

● A Java File object that represents the policy-protected document. An existing file is overwritten.

● The identifier of the policy that is used to secure the document.

● A string value that is used to identify the policy-protected document. This value cannot exceed 50
characters.

● A string value that specifies an alternate identifier to associate with the license. This optional parameter
can be null.

● A PackageReporter object that is used to receive progress information. This optional parameter can
be null.

Before you can successfully secure a document, you must ensure that a Policy object exists. The return
value of the Policy object’s getId method is used as the installDocumentSecurity method’s third
argument. For information about creating this object, see “Creating policies” on page 18.

The installDocumentSecurity method returns a License object that represents the license that is
used to secure the document. This object is an instance of the License interface. For information about
this interface, see the API Reference.

The following code example creates a policy-protected document by using a Policy object named
myPolicy.

Example 5.1 Securing a document

//Reference the PDF document to secure
File pdfDocument = new File("C:\\PurchaseOrder.pdf");

//Create a File object that represents the policy-protected document
File secureDocument = new File("C:\\securePurchaseOrder.pdf");

//Specify the name used to identify the policy-protected document
String secureDocName = "securePurchaseOrder";

//Secure the document
License myLicense =
apsDocumentManager.installDocumentSecurity(pdfDocument,secureDocument,
myPolicy.getId(),secureDocName,null,null);

Note: To policy-protect a document, your application requires access to an additional security
component. For information about this component, contact Adobe Customer Support.

Adobe LiveCycle Policy Server Managing Documents
Developing Custom Applications Removing policy security from a document 38

Removing policy security from a document

You remove policy security from a policy-protected document by using the DocumentManager object’s
removeDocumentSecurity method. This method requires the following arguments:

● A Java File object that represents the policy-protected document.

● A Java File object that represents the unsecured document. An existing file is overwritten.

● A PackageReporter object that is used to receive progress information. This optional parameter can
be null.

Before removing security from a document, call the DocumentManager object’s isDocumentSecured
method to ensure that the document is secure. This method requires a Java File object that represents
the document. The isDocumentSecured method returns true if the document is secure; otherwise, it
returns false.

The following code example determines whether a document is secure. If it is secure, security is removed.

Example 5.2 Removing policy security from a document

//Create a File object based on an existing document
File pdfDocument = new File("C:\\PurchaseOrder.pdf")

//Determine if the document is secure
boolean secured = apsDocumentManager.isDocumentSecured(pdfDocument);

if (secured == true){
//Create an unsecured document file
File unsecuredDocument = new File("C:\\unsecuredPurchaseOrder.pdf");

//Remove the security
apsDocumentManager.removeDocumentSecurity(pdfDocument,unsecuredDocument,
null);

}

Switching document policies

Sometimes it is necessary to switch a document’s policy. For example, assume that a document is secured
with a policy that becomes outdated and a newer policy becomes available. In this situation, you can
change the policy associated with a policy-protected document’s license. For information, see “Changing a
policy associated with a license” on page 40.

Retrieving a license from a policy-protected document

You call the DocumentManager object’s getDocumentLicense method to retrieve a Policy Server
license that is used to secure a document. This method requires a Java File object that represents the
policy-protected document and returns a License object.

Before retrieving the license from a document, call the DocumentManager object’s
isDocumentSecured method to ensure that the document is secure. An exception is thrown if you
attempt to retrieve a license from an unsecured document.

Once you retrieve a License object, you can perform tasks such as revoking a document. For information,
see “Revoking and reinstating documents” on page 39.

Adobe LiveCycle Policy Server Managing Documents
Developing Custom Applications Revoking and reinstating documents 39

The following code example retrieves a Policy Server license from a policy-protected document and
displays the policy-protected document’s file name.

Example 5.3 Retrieving a license from a policy-protected document

//Create a File object based on an existing document
File pdfDocument = new File("C:\\PurchaseOrder.pdf")

//Determine if the document is secure
boolean secured = apsDocumentManager.isDocumentSecured(pdfDocument);

if (secured == true){
//Retrieve the license from the policy-protected document
License myLicense = apsDocumentManager.getDocumentLicense(pdfDocument);
System.out.println("The name of the policy-protected document is "
+myLicense.getDocumentName());

}

Tip: Document publishers can dynamically change policies for documents that they have published. The
license for a document may be outdated if the license was changed after the document was
published. If you want to ensure that you have the latest license, use the getLicense method of the
LicenseManager class to retrieve the license from the server.

Revoking and reinstating documents
You can revoke and reinstate access capabilities for policy-protected documents by using the Policy Server
API. For example, you can programmatically revoke the ability for a recipient to open a policy-protected
document that has offline access. When you revoke a document, the change takes effect the next time the
recipient synchronizes with Policy Server by opening the policy-protected document online.

The ability to revoke a document provides additional security. For example, assume a newer version of a
document becomes available and you do not want anyone viewing the older version. In this situation, the
older document can be revoked, and nobody can view the document unless it is reinstated.

To revoke or reinstate a document, you use a LicenseManager object. For information about creating
this object, see “Creating a LicenseManager object” on page 16.

Revoking documents

You revoke a document by using the LicenseManager object’s revokeLicense method. This method
requires the following arguments:

● A string value that represents the Id of the license to revoke. You can get this value by calling the
License object’s getId method.

● An integer value that specifies the reason to revoke the document. This argument is a field of a static
License object and is one of the following values: License.DOCUMENT_REVISED,
License.DOCUMENT_TERMINATED, License.GENERAL_MESSAGE. For information about the
meaning of these fields, see the API Reference.

● A Java URL object that directs the user who is trying to open the document to a resource on the
Internet. For example, this object can direct a user to a newer version of the document. This argument
is optional and may be null.

Adobe LiveCycle Policy Server Managing Documents
Developing Custom Applications Reinstating documents 40

The following code example revokes a document. The license Id is retrieved by calling the License
object’s getId method. This value is passed to the revokeLicense method.

Example 5.4 Revoking a document

//Retrieve the license from the policy-protected document
License myLicense = apsDocumentManager.getDocumentLicense(pdfDocument);

//Get the License Id value
String myLicId = myLicense.getId();

// Revoke the document
apsLicenseManager.revokeLicense(myLicId, License.DOCUMENT_TERMINATED, null);

Reinstating documents

You can reinstate a revoked document by using the LicenseManager object’s unrevokeLicense
method. This method requires a string value that represents the Id of the license used to revoke the
document. The unrevokeLicense method does not have a return value.

The following code example reinstates a document.

Example 5.5 Reinstating a document

// Assume the myLicenseId is used to revoke a document
apsLicenseManager.unrevokeLicense(myLicenseId);

Managing licenses
In addition to using a LicenseManager object to revoke and reinstate policy-protected documents, you
can also use this object to manage licenses. Using this object, you can perform the following tasks:

● Change the policy associated with licenses

● Set alternative Id for licenses

● Retrieve licenses

● Updating the URL of a license

Changing a policy associated with a license

You use the LicenseManager object’s changeLicensePolicy method to change a policy associated
with a license. This ensures that a license uses the most up-to-date secure policy available. For example,
assume a document is initially highly confidential and is only available to a few recipients (such as board
members who belong to a company). After a while, the document becomes less confidential and the
policy is changed so that the document is available to all employees.

If the document is online, the change takes affect immediately. However, if the document is offline, the
change takes affect the next time a recipient synchronizes with Policy Server by opening the
policy-protected document online.

Adobe LiveCycle Policy Server Managing Documents
Developing Custom Applications Setting an alternative Id for a license 41

The changeLicensePolicy method requires the following arguments:

● The Id of the license to which the policy change is made

● The Id of the new policy

The following code changes a policy associated with a license.

Example 5.6 Changing a policy associated with a license

//Create a File object based on a policy-protected document
File myDocument = new File("C:\\securePurchaseOrder.pdf");

//Get the license of the policy-protected document
License myLicense = apsDocumentManager.getDocumentLicense(myDocument);

//Change the license’s policy
apsLicenseManager.changeLicensePolicy(myLicense.getId(), newPolicy.getId());

Note: In this code example, assume that the newPolicy object represents the new policy. For
information about creating a Policy object, see “Creating a Policy object” on page 19.

Setting an alternative Id for a license

You use the LicenseManager object’s setLicenseAlternateId method to set an alternative
identifier for a license. This method requires a string value that represents the alternative identifier. The
default format of a license identifier is similar to the format of a Universal Unique Identifier (UUID). For
example, the following string represents a license identifier:

ISC17168AA-3603-83A9-75F1-1C9497E72B30

It is easier to use an alternative identifier value than to use its default Id value. You can set a license’s
alternative identifier with a value that describes the license. If you attempt to set a license’s alternative
identifier with a value that is already in use, an exception is thrown.

The following code example sets a license’s alternative identifier

Example 5.7 Setting a license’s alternative Id

// Set a license’s alternative identifier
apsLicenseManager.setLicenseAlternateId("OctoberPurchaseOrderLicense");

Retrieving existing licenses

You retrieve existing licenses from Policy Server by calling the LicenseManager object’s getLicenses
method. This method returns an array of License objects. Before calling this method, create a
LicenseSearchFilter object by using its public constructor. This object acts as a license filter that
enables you to define search criteria.

You define the search criteria by calling methods that belong to the LicenseSearchFilter object. For
example, call its setLicenseIssueBeginDate method to return all License objects issued after a
specific date.

Adobe LiveCycle Policy Server Managing Documents
Developing Custom Applications Retrieving a specific license 42

The following code example retrieves the first 20 Policy Server licenses issued after August 21, 2004.

Example 5.8 Retrieving existing licenses

//Create a LicenseSearchFilter object
LicenseSearchFilter licenseSF = new LicenseSearchFilter();

//Create a Calendar object to pass to setLicenseIssueBeginDate
Calendar myCalendar2 = Calendar.getInstance();
myCalendar2.set(2004,8,21);
licenseSF.setLicenseIssueBeginDate(myCalendar2.getTime());

//Get the first 20 licenses issued after Aug 21, 2004
License [] allLicenses = apsLicenseManager.getLicenses(licenseSF,20);

for (int zz = 0; zz< allLicenseslength; zz++)
{

License myLicense = (License)allLicenses[zz] ;
System.out.println("The name of document that uses this license is

"+myLicense.getDocumentName());
}

Note: For more information about the LicenseSearchFilter object, see the API Reference.

Retrieving a specific license

You can retrieve a specific license from Policy Server by calling the LicenseManager object’s
getLicense method and passing the Id of the license to retrieve. This method returns a License object
that corresponds to the Id value. If there are no licenses with the specified Id value, this method returns
null.

You can call the License object’s getId method to get a license Id. The following code example retrieves
a license that has an Id value of ISC17168AA-3603-83A9-75F1-1C9497E72B30.

Example 5.9 Retrieving a specific license

//Get a license that corresponds to ISC17168AA-3603-83A9-75F1-1C9497E72B30
License myLicense =
apsLicenseManager.getLicense("ISC17168AA-3603-83A9-75F1-1C9497E72B30");
System.out.println("The name of document that uses the license is
"+myLicense.getDocumentName());

Note: To retrieve a license by its alternative Id, you must use the LicenseManager object’s
getLicenseByAlternateId method. For information about an alternative Id, see “Setting an
alternative Id for a license” on page 41.

Adobe LiveCycle Policy Server Managing Documents
Developing Custom Applications Updating the URL of a license 43

Updating the URL of a license

You use the LicenseManager object’s updateLicenseRevocationUrl method to update or remove
the revocation URL for a license that is currently revoked. This method requires following arguments:

● A string that specifies the license Id of the revoked license

● A URL object that represents the URL of the new revocation URL and null if you want remove the URL
that was previously set.

For more information about the updateLicenseRevocationUrl method, see the API Reference.

Querying license information
You can use the methods that belong to the License object to retrieve license information. For example,
call the License object’s getIssueDate method to determine the date on which the license was issued.
For a complete list of all the methods you can use to retrieve license information, see the API Reference.

 44

6 Working with Watermarks

This chapter explains how to use the Policy Server API to create and manipulate watermarks. Watermarks
help ensure the security of a document by uniquely identifying the document and controlling copyright
infringement. For example, you can create and place a watermark that states Confidential on all pages of a
document.

The two Policy Server APIs that you use to work with watermarks are Watermark and
WatermarkManager. This chapter discusses how to create a Watermark object. For information about
creating a WatermarkManager object, see “Creating a WatermarkManager object” on page 16.

This chapter contains the following information:

Creating watermarks
To create a watermark, perform the following tasks:

1. Create a Watermark object.

2. Set the attributes for the watermark. For information, see “Setting watermark attributes” on page 45.

3. Register the watermark with Policy Server. For information, see “Registering watermarks” on page 49.

Creating a Watermark object

You create a Watermark object by calling the InfomodelObjectFactory object’s createWatermark
method. This method returns a Watermark object that is based on the Watermark interface. For
information about an InfomodelObjectFactory object, see “Working with InfomodelObjectFactory
objects” on page 17.

The following code example creates a Watermark object.

Example 6.1 Creating a Watermark object

//Create a Watermark object
Watermark myWatermark = InfomodelObjectFactory.createWatermark();

Note: Only administrators can register watermarks with Policy Server. As a result, there is no reason for
anyone other than administrators to create watermark objects.

Topic Description See

Creating watermarks Describes how to create new watermarks. page 44

Setting watermark attributes Describes how to use a Watermark object to set
watermark attributes.

page 45

Managing watermarks Describes how use a WatermarkManager object to
manage watermarks.

page 48

Querying watermark information Describes how to retrieve watermark information, such as
the name of the watermark.

page 51

Adobe LiveCycle Policy Server Working with Watermarks
Developing Custom Applications Setting watermark attributes 45

Setting watermark attributes
You can use the Watermark object to set the following watermark attributes (for example, you can define
the name of a watermark by calling the Watermark object’s setName method):

● Background

● Custom text

● Date information

● Horizontal position

● Name

● Opacity

● Rotation

● Scale

● User information

● Vertical position

Setting the background attribute

You determine whether a watermark is set in a document page’s background or foreground by calling the
Watermark object’s setBackground method. If you specify true, the watermark is set in the page’s
background; otherwise, it is set in the foreground.

Before you set this attribute, call the Watermark object’s isBackground method. This method returns
true if the watermark is set in a document page’s background. The following code example sets a
watermark in a page’s background, providing that this attribute is not already set.

Example 6.2 Setting the background attribute

if (myWatermark.isBackground() != true)
{

//Set the background attribute
myWatermark.setBackground(true);

}

Setting the custom text attribute

You can set the text that a watermark displays by calling the Watermark object’s setCustomText
method. This method requires a string value that represents the text. The following code example sets the
custom text attribute to Confidential.

Example 6.3 Setting the custom text attribute

//Create a Watermark object
Watermark myWatermark = InfomodelObjectFactory.createWatermark();

//Set the custom text attribute
myWatermark.setCustomText("Confidential");

Adobe LiveCycle Policy Server Working with Watermarks
Developing Custom Applications Setting the setDateIncluded attribute 46

Setting the setDateIncluded attribute

You determine whether a watermark displays the date that a document was opened by calling the
Watermark object’s setDateIncluded method. If you specify true, the date will appear in the
watermark. The following code example sets this attribute to true.

Example 6.4 Setting the setDateIncluded attribute

//Create a Watermark object
Watermark myWatermark = InfomodelObjectFactory.createWatermark();

//Set the setDateIncluded attribute
myWatermark.setDateIncluded(true);

Setting the setHorizontalAlignment attribute

You set the setHorizontalAlignment attribute by calling the Watermark object’s
setHorizontalAlignment method. This method requires one of the following string values:

● HORIZONTAL_ALIGNMENT_LEFT

● HORIZONTAL_ALIGNMENT_CENTER

● HORIZONTAL_ALIGNMENT_RIGHT

The following code example sets this attribute to HORIZONTAL_ALIGNMENT_CENTER.

Example 6.5 Setting the setHorizontalAlignment attribute

//Create a Watermark object
Watermark myWatermark = InfomodelObjectFactory.createWatermark();

//Set the setHorizontalAlignment attribute
myWatermark.setHorizontalAlignment("HORIZONTAL_ALIGNMENT_CENTER");

Setting the name attribute

You set the name of a watermark by calling the Watermark object’s setName method. The only two
restrictions are no two watermarks can have the same name and a name cannot exceed 255 characters.
The following code example sets the name of a watermark.

Example 6.6 Setting the name attribute

//Create a Watermark object
Watermark myWatermark = InfomodelObjectFactory.createWatermark();

//Set the name attribute
myWatermark.setName("Confidential");

Setting the opacity attribute

You set the opacity attribute by calling the Watermark object’s setOpacity method and specifying
an integer value that represents the opacity percentage. The higher the percentage, the easier it is to view
the watermark.

Adobe LiveCycle Policy Server Working with Watermarks
Developing Custom Applications Setting the rotation attribute 47

The following code example sets the opacity attribute to 80 percent.

Example 6.7 Setting the opacity attribute

//Create a Watermark object
Watermark myWatermark = InfomodelObjectFactory.createWatermark();

//Set the opacity attribute
myWatermark.setOpacity(80);

Setting the rotation attribute

You set the rotation attribute by calling the Watermark object’s setRotation method and specifying
an integer value that represents the number of degrees to rotate the watermark. Values are from 0 to 359,
inclusive. The following code example sets this attribute to 180.

Example 6.8 Setting the rotation attribute

//Create a Watermark object
Watermark myWatermark = InfomodelObjectFactory.createWatermark();

//Set the opacity attribute
myWatermark.setRotation(180);

Setting the scale attribute

You set the scale attribute by calling the Watermark object’s setScale method and specifying an
integer value that represents the scale percentage. The value 0 specifies the fit-to-page scale and is the
default size of a watermark. Valid values are from 0 to 99, inclusive. The following code example sets this
attribute to 10.

Example 6.9 Setting the scale attribute

//Create a Watermark object
Watermark myWatermark = InfomodelObjectFactory.createWatermark();

//Set the scale attribute
myWatermark.setScale(10);

Setting the setUserIdIncluded attribute

You set the setUserIdIncluded attribute by calling the Watermark object’s setUserIdIncluded
method. This method requires a boolean value that specifies whether the watermark includes the Id of the
user who opened the document. If you specify true, the user Id is included. Before setting this attribute,
call the isUserIdIncluded method to determine if it is already set.

The following code example sets this attribute to true.

Example 6.10 Setting the setUserIdIncluded attribute

if (myWatermark.isUserIdIncluded() != true)
{

//Set the setUserIdIncluded attribute
myWatermark.setUserIdIncluded(true);

}

Adobe LiveCycle Policy Server Working with Watermarks
Developing Custom Applications Setting the setUserNameIncluded attribute 48

Setting the setUserNameIncluded attribute

You set the setUserNameIncluded attribute by calling the Watermark object’s
setUserNameIncluded method. This method requires a boolean value that specifies whether the
watermark includes the name of the user who opened the document. If you specify true, the user name is
included. Before setting this attribute, call the isUserNameIncluded method to determine if it is already
set.

The following code example sets this attribute to true.

Example 6.11 Setting the setUserNameIncluded attribute

if (myWatermark.isUserNameIncluded() != true)
{

//Set the setUserNameIncluded attribute
myWatermark.setUserNameIncluded(true);

}

Setting the setVerticalAlignment attribute

You set the setVerticalAlignment attribute by calling the Watermark object’s
setVerticalAlignment method. This method requires one of the following string values as an
argument:

● VERTICAL_ALIGNMENT_TOP

● VERTICAL_ALIGNMENT_CENTER

● VERTICAL_ALIGNMENT_BOTTOM

The following code example sets this attribute to VERTICAL_ALIGNMENT_CENTER.

Example 6.12 Setting the setVerticalAlignment attribute

//Create a Watermark object
Watermark myWatermark = InfomodelObjectFactory.createWatermark();

//Set the setVerticalAlignment attribute
myWatermark.setVerticalAlignment("VERTICAL_ALIGNMENT_CENTER");

Managing watermarks
You can manage a watermark by using a WaterManager object. Using this object, you can perform the
following tasks:

● Register a watermark

● Retrieve a watermark

● Update a watermark

● Delete a watermark

Note: In the following code examples, the name of the WatermarkManager object is named
apsWaterManager. For information about creating this object, see “Creating a
WatermarkManager object” on page 16.

Adobe LiveCycle Policy Server Working with Watermarks
Developing Custom Applications Registering watermarks 49

Registering watermarks

A watermark must be registered with Policy Server before it can be used. Only an administrator can
register a watermark. Register a watermark after setting its attributes. For information, see “Setting
watermark attributes” on page 45.

You register a watermark by calling the WatermarkManager object’s registerWatermark method
and passing a Watermark object that represents the watermark to register. This method returns a string
value that specifies the watermark’s Id.

The following code example registers a watermark with Policy Server.

Example 6.13 Registering a watermark with Policy Server

//Create a Watermark object
Watermark myWatermark = InfomodelObjectFactory.createWatermark();

//Set the custom text attribute
myWatermark.setCustomText("Confidential");

//Set the name attribute
myWatermark.setName("Confidential");

//Set the setDateIncluded attribute
myWatermark.setDateIncluded(true);

//Register the watermark and display its Id
String waterId = apsWatermarkManager.registerWatermark(myWatermark);
System.out.println("The Id of the registered watermark is "+waterId);

Note: If you attempt to register the same watermark twice, an exception is thrown.

Retrieving existing watermarks

You can retrieve an existing watermark from Policy Server by using either of these methods:

● getWatermarkByName

● getWatermarkById

Both these methods belong to the WatermarkManager interface. The getWatermarkByName method
requires a string value that specifies the watermark’s name and returns a Watermark object.

The getWatermarkById method requires a string value that specifies the watermark’s Id and returns a
Watermark object. The format of a watermark Id is similar to the format of a Universal Unique Identifier
(UUID). For example, the following string value represents a watermark Id:

899EE683-5088-61D7-5C7A-73934F68E629

Adobe LiveCycle Policy Server Working with Watermarks
Developing Custom Applications Updating watermarks 50

The following code retrieves a watermark named Confidential and displays its Id.

Example 6.14 Retrieving an existing watermark

//Retrieve a watermark named confidential and display its Id value
Watermark wm = apsWatermarkManager.getWatermarkByName("Confidential");

if (wm != null)
System.out.println("The Id of the registered watermark is "+wm.getId());

else
System.out.println("There is no watermark that is named Confidential");

Note: An SDKException is thrown if no watermark corresponds to the specified name or Id value.

Updating watermarks

You can update a watermark anytime after you modify it. Assume that you retrieve an existing watermark
by calling the getWatermarkByName method and then modify its opacity attribute. Before the change
takes effect, you must update the watermark by calling the WatermarkManager object’s
updateWatermark method and passing a Watermark object that represents the modified watermark.
For information about the opacity attribute, see “Setting the opacity attribute” on page 46.

The following code example retrieves a watermark, modifies its opacity attribute, and then updates it.

Example 6.15 Updating a watermark

//Retrieve a watermark named confidential
Watermark wm = apsWatermarkManager.getWatermarkByName("Confidential");

if (wm != null)
System.out.println("The Id of the registered watermark is "+wm.getId());

else
System.out.println("There is no watermark that is named Confidential");

//modify it’s opacity attribute
wm.setOpacity(60);

//Update the watermark
apsWatermarkManager.updateWatermark(wm);

Deleting watermarks

You can delete a watermark by calling the WatermarkManager object’s deleteWatermark method.
This method requires a watermark Id that identifies the watermark. After the watermark is deleted, it can
not be added to policies. However, policies that are already using the watermark can still do so.

The following code example deletes a watermark.

Example 6.16 Deleting a watermark

//Delete a watermark
apsWatermarkManager.deletetWatermark("899EE683-5088-61D7-5C7A-73934F68E69");

Note: If you specify an invalid watermark Id, an exception is thrown.

Adobe LiveCycle Policy Server Working with Watermarks
Developing Custom Applications Querying watermark information 51

Querying watermark information
You can use the methods that belong to the Watermark object to retrieve watermark information. For
example, you can call the Watermark object’s getName method to determine the watermark name. For a
complete list of all the methods you can use to retrieve watermark information, see the API Reference.

 52

7 Registering Event Handlers

This chapter explains how you can use the Policy Server SDK API to configure and register event handlers.
When event auditing is enabled, Policy Server tracks Policy Server-related actions as they occur, such as
applying a policy to a document or opening a policy-protected document.

This chapter contains the following information:

Events and event handlers
Policy Server can be configured to maintain an audit of the actions that users and the server component
perform. These actions are referred to as events. Event handlers are applications that process the events.
Policy Server passes event information to event handlers as the events occur.

Policy Server includes an event handler that enables users and administrators to view audited events.
Information about the audited events are displayed in the Policy Server web pages.

Event types

Events fall into one of the following categories:

● Administrator events are actions related to an administrator, such as creating a new administrator
account

● Document events are actions related to a document, such as closing a policy-protected document.

● Policy events are actions related to a policy, such as creating a new policy.

● Server events are actions related to Policy Server, such as synchronizing with the user directory.

● User events are actions related to a user, such as deleting a user account.

You cannot create new events. The fields of the EventManager interface define all of the available events.
For a list of events, see the API Reference.

Topic Description See

Events and event handlers Describes events and event handlers. page 52

Registering event handlers Describes how to register event handlers and specify the
events that they process.

page 53

Unregistering event handlers Describes how to unregister event handlers so that they no
longer receive events for processing.

page 54

Retrieving event handlers Describes how to retrieve objects that contain information
about existing event handlers.

page 54

Modifying event handlers Describes how to change the events that an event handler is
subscribed to.

page 54

Retrieving subscribable events Describes how to retrieve all events that an event handler
subscribes to.

page 55

Adobe LiveCycle Policy Server Registering Event Handlers
Developing Custom Applications Registering event handlers 53

Creating event handlers

To create an event handler, you need to implement the EventHandler interface of the
com.adobe.edc.server.spi Java package. Although the details about implementing the interface is
beyond the scope of this guide, the API Reference includes information about it.

For information about developing custom event handlers, contact Adobe Customer Support.

Registering event handlers
You must register an event handler before it can track events, such as a policy-protected document being
opened. To register an event handler, perform the following tasks:

1. Create an EventHandlerDefinition object by using its public constructor.

2. Define an integer array of event codes to which that event handler subscribes. Event codes are defined
by fields that belong to the EventManager interface. For example, the EventManager object’s
DOCUMENT_VIEW_EVENT field defines an event that occurs when a policy-protected document is
opened. You must use a static EventManager object to reference event codes.

3. Call the EventHandlerDefinition object’s setEventType method and pass the integer array
that defines the event codes.

4. Call the EventHandlerDefinition object’s setHandlerClass method and pass a string value
that specifies the custom event handler class. An event handler can only have one event handler class.
If you attempt to register an event handler without defining an event handler class, an exception is
thrown.

5. Call the EventHandlerDefinition object’s setHandlerInitData method and pass a string
value that specifies the location of data required to initialize the handler.

6. Call the EventManager object’s registerEventHandler method and pass the
EventHandlerDefinition object. This method does not have a return value. For information about
creating an EventManager object, see “Creating an EventManager object” on page 15.

The following code example registers an event handler that uses an event handler class named
PostEventHandler.

Example 7.1 Registering an event handler

// Create an EventHandlerDefinition object
EventHandlerDefinition eventHandleDef = new EventHandlerDefinition();

//Define an integer array of event codes
int [] defineEvents
={EventManager.DOCUMENT_VIEW_EVENT,EventManager.DOCUMENT_FORM_FILL_EVENT,
EventManager.DOCUMENT_CLOSE_EVENT};

//Set the event codes, the handler class, and the initialization data
eventHandleDef.setEventType(defineEvents);
eventHandleDef.setHandlerClass("events.handler.PostEventHandler");
eventHandleDef.setHandlerInitData("http://localhost:8080/events/events");

//Register the event handler
apsEventManager.registerEventHandler(eventDef);

Adobe LiveCycle Policy Server Registering Event Handlers
Developing Custom Applications Unregistering event handlers 54

Note: In this code example, the event handler subscribes to three events: the document view event,
document fill event, and document close event. You can specify EventManager.ALL_EVENTS in
the event array, which results in the event handler subscribing to all events.

Unregistering event handlers
You can unregister an event handler by using methods that belong to the EventManager interface. After
an event handler is unregistered, it must be registered again before it can be used. You can unregister all
event handlers by calling the EventManager object’s unregisterAllEventHandlers method. This
method does not require any arguments and does not have a return value.

You can unregister a specific event handler by calling the EventManager object’s
unregisterEventHandler method. This method requires a string value that specifies the event
handler class to unregister and does not have a return value.

Retrieving event handlers
You can retrieve all registered event handlers by using the EventManager object’s getEventHandlers
method. This method returns an array of EventHandlerDefinition objects, where each object
represents a registered event handler. The event handler’s class can be obtained by calling the
EventHandlerDefinition object’s getHandlerClass method.

The following code example retrieves all registered event handlers and displays each event handler’s class.

Example 7.2 Retrieving event handlers

// Create an array of EventHandlerDefinition objects
EventHandlerDefinition [] allEventHandlers =
apsEventManager.getEventHandlers();

//Iterate through the array
for (int xx=0; xx<allEventHandlers.length;xx++){

EventHandlerDefinition eventHandlerOb = (EventHandlerDefinition)
allEventHandlers[xx] ;

System.out.println("The name of the event handler's class is
"+eventHandlerOb.getHandlerClass());
}

Modifying event handlers
You modify the events that an existing event handler subscribes to by calling the EventManager object’s
modifyEventsForHandler method. This method requires a string value that specifies the event
handler class to modify and an integer array of event codes for which that event handler subscribes to. As
previously stated in this chapter, event codes are defined by fields that belong to the EventManager
interface.

The specified events replace the previously registered events for this event handler. To add additional
events, you must include all the events that the event handler previously subscribed to and the additional
events.

Adobe LiveCycle Policy Server Registering Event Handlers
Developing Custom Applications Retrieving subscribable events 55

The following code example adds two new events to an event handler. Assume that the event handler in
this code example previously subscribed to the following three events: view event, form fill event, and
close event.

Example 7.3 Modifying event handlers

// Create an EventHandlerDefinition object
EventHandlerDefinition eventHandleDef = new EventHandlerDefinition();

//Define an integer array of event codes. Specify the original three
//events plus the addition two. Now there will be five events to which
//this event handler subscribes
int [] defineEvents
={EventManager.DOCUMENT_VIEW_EVENT,EventManager.DOCUMENT_FORM_FILL_EVENT,
EventManager.DOCUMENT_CLOSE_EVENT,
EventManager.DOCUMENT_MODIFY_EVENT,EventManager.DOCUMENT_COPY_CONTENT_EVENT}
;

//Set the event codes, the handler class, and the initialization data
eventHandleDef.setEventType(defineEvents);
eventHandleDef.setHandlerClass("events.handler.PostEventHandler");
eventHandleDef.setHandlerInitData("http://localhost:8080/events/events");

//Register the event handler
apsEventManager.registerEventHandler(eventDef);

Retrieving subscribable events
You can get all events to which an event handler can subscribe to by calling the EventManager object’s
getSubscribableEvents method. This method returns an array of Event objects, where each object
represents an event to which an event handler can subscribe.

The Event interface, on which an Event object is based, consists of three methods:

● getCategory, which returns the event’s category

● getName, which returns the event’s name

● getType, which returns the event’s type code

After you call the getSubscribableEvents method, you can iterate through the array of Event
objects and retrieve the event’s name, category, and type code. The following code example retrieves all
events and displays each event’s name, category, and type code.

Example 7.4 Retrieving subscribable events

//Create an array of Event objects
Event [] allEvents = apsEventManager.getSubscribableEvents();

//Iterate through the array
for (int xx=0; xx<allEvents.length;xx++){

 Event eventOb = (Event) allEvents[xx] ;
 System.out.println("The name of the event is "+eventOb.getName());
 System.out.println("The category of the event is "+eventOb.getCategory());
 System.out.println("The type of the event is "+eventOb.getType());

}

Note: For more information about the Event interface, see the API Reference.

 56

Index

A
adding

import statements to Java projects 12
permissions to policy entries 25
principals to policy entries 26

Adobe LiveCycle Policy Server
connecting to 12
disconnecting from 17
JAR files 10
manager objects 14
URL 12

attaching policy entries to policies 27
attributes

alternative Id (policies) 23
background (watermark) 45
custom text (watermark) 45
description (policies 21
EncryptAttachmentsOnly (policies) 23
event tracking (policies) 21
metadata (policies) 20
name (policies) 21
name (watermark) 46
offline lease period (policies) 20
opacity (watermark) 46
rotation (watermark) 47
scale (watermark) 47
setDateInclude (watermark) 46
setHorizontalAlignment (watermark) 46
setUserIdIncluded (watermark) 47
setUserNameIncluded (watermark) 48
setVerticalAlignment (watermark) 48
validity period (policies) 22
watermark (policies) 23

C
changing

event handlers 54
policy associated with a license 40
policy owner 30

connecting
disconnecting 17
using EJB 13
using SOAP 13

creating
DocumentManager object 15
EventManager object 15
LicenseManager object 16
policies 18, 19
policy entries 24
PolicyManager object 14
policy-protected documents 37
Principal object 33

creating (Continued)
UserManager object 16
WatermarkManager object 16
watermarks 44

custom text, setting 45

D
deleting

policies 32
watermarks 50

disconnecting from Policy Server 17
documents

reinstating 40
removing security from 38
retrieving a license from 38
revoking 39
securing with policies 37
setting encryption 23
setting metadata 20
setting offline lease period 20
switching policies 38

E
EDCFactory object 12
EJB mode 12
event handlers 52
Event object 55
EventHandlerDefinition object 53
EventManager interface 52
events

about 52
setting tracking 21
subscriber, retrieving 55

I
import statements, adding to Java projects 12
InfomodelObjectFactory methods

createPermission 25
createPolicy 19
createPolicyEntry 24
createSpecialPrincipal 26, 33
createWatermark method 44

InfomodelObjectFactory object 17

J
JAR files 10
JBoss API library files 11
jbossall-client.jar file 12
jndi.properties file 13

Adobe LiveCycle Policy Server Index
Developing Custom Applications 57

L
LicenseManager interface 36
licenses

changing policy associated with 40
retrieving 38, 41
retrieving information about 43
setting alternative identifier 41
updating URL of 43

M
managing watermarks 48
metadata, setting 20
methods

addPermissions 25
attachPolicyEntry 27
changeLicensePolicy 40
changePolicyOwner 30
clearPermissions 26
clearPolicyEntries 27
clearPrincipal 27
connect 12
createPolicy 19
createPolicyEntry 24
createSpecialPrincipal 33
createValidityPeriod 22
createWatermark 44
deletePolicy 32
deleteWatermark 50
getDocumentLicense 38
getDocumentManager 15
getEventHandlers 54
getEventManager 15
getGroups 34
getHandlerClass 54
getId 39
getLicense 42
getLicenseManager 16
getLicenses 41
getPermissions 25
getPolicy 30
getPolicyByAlternateId 30
getPolicyManager 14
getPrincipal 27
getSubscribableEvents 55
getUserManager 16
getUsers 34
getWatermarkById 49
getWatermarkByName 49
getWatermarkManager 16
installDocumentSecurity 37
isBackgound 45
isPlaintextMetadata 20
modifyEventsForHandler 54
registerPolicy 29
registerWatermark 49

methods (Continued)
removeDocumentSecurity 38
removePermission 26
revokeLicense 39
setAbsoluteValidityPeriod 22
setBackground 45
setCustomText 45
setDateIncluded 46
setEncryptAttachmentsOnly 23
setHandlerClass 53
setHorizontalAlignment 46
setLicenseAlternateId 41
setLicenseIssueBeginDate 41
setName 21, 46
setOfflineLeasePeriod 20
setOpacity 46
setOwner 29
setPrincipal 26
setRelativeExpirationDays 22
setRotation 47
setScale 47
setTracked 21
setUserNameIncluded 48
setValidityPeriod 22
setVerticalAlignment 48
unregisterAllEventHandlers 54
unregisterEventHandler 54
unrevokeLicense 40
updateLicenseRevocationUrl 43
updatePolicy 31
updateWatermark 50

modifying event handlers 54

O
objects

DocumentManager 15
EDCFactory object 12
Event 55
EventHandlerDefinition 53
EventManager 15
InfomodelObjectFactory object 17
LicenseManager 16
LicenseSearchFilter 41
Permission 25
Policy object 19
PolicyEntry object 24
PolicyManager 14
principal object 33
PrincipalSearchFilter 34
Properties object 12
UserManager 16
ValidityPeriod 22
watermark 44
WatermarkManager 16

offline lease period, setting 20

Adobe LiveCycle Policy Server Index
Developing Custom Applications 58

P
password property 12
Permission object 25
policies

associated with a license, changing 40
attaching policy entries to 27
attributes 20
changing owner 30
creating 18
deleting 32
getting information about 32
registering 29
removing from documents 38
retrieving 29
setting alternative identifier 23
setting name and description 21
setting validity period 22
switching 38
updating 31

policy entries
adding permissions to 25
adding principals to 26
creating 24
removing permissions from 26
retrieving and removing principals from 27
retrieving permissions from 25

Policy object 19
PolicyEntry object 24
PolicySearchFilter object 29
portable document rights language (PDRL) 18
Principal object 33
Properties object 12
publisher principal 26

R
registering

event handlers 53
policies 29
watermarks 49

reinstating documents 40
removing

permissions from policy entries 26
principals from policy entries 27
security from documents 38

retrieving
event handlers 54
groups from Policy Server 34
licenses from Policy Server 41
licenses from policy-protected documents 38
permissions from policy entries 25
policies from Policy Server 29
principals associated with policy entries 27
specific license 42

retrieving (Continued)
subscribable events 55
user accounts 34
watermarks 49

revoking documents 39

S
securing documents 36
setting

alternative license Id 41
document encryption 23
policy attributes 20
policy’s alternative identifier 23
watermark attributes 45

SOAP mode 12
switching document policies 38

U
unregistering event handlers 54
updating

license URL 43
policies 31
watermarks 50

user accounts, retrieving 34
user name property 12

V
validity period, setting 22
ValidityPeriod object 22

W
watermarks

creating 44
deleting 50
querying information about 51
registering 49
retrieving 49
setting background attribute 45
setting custom text attribute 45
setting name attribute 46
setting opacity attribute 46
setting rotation attribute 47
setting scale attribute 47
setting setDateIncluded attribute 46
setting setHorizontalAlignment attribute 46
setting setUserNameIncluded attribute 48
setting setVerticalAlignment attribute 48
setUserIdIncluded attribute 47
specifying for document pages 23
updating 50

WebSphere API library files 11

	Contents
	List of Examples
	Preface
	What’s in this guide?
	Who should read this guide?
	Related documentation

	Introduction
	Java libraries

	Invoking Policy Server
	Including the API library files
	Adding import statements

	Connecting to Policy Server
	Connecting to Policy Server using SOAP
	Connecting to Policy Server using EJB

	Creating Policy Server manager objects
	Creating a PolicyManager object
	Creating a DocumentManager object
	Creating an EventManager object
	Creating a LicenseManager object
	Creating a UserManager object
	Creating a WatermarkManager object

	Working with InfomodelObjectFactory objects
	Disconnecting from Policy Server

	Working with Policies
	Creating policies
	Creating a Policy object
	Creating a Policy object based on a PDRL XML file

	Setting policy attributes
	Setting a document’s offline lease period
	Setting a document’s metadata
	Setting a policy’s name and description
	Setting a document’s event tracking
	Setting a policy’s validity period
	Setting a policy’s alternative identifier
	Setting a policy’s watermark
	Setting the EncryptAttachmentsOnly attribute

	Working with policy entries
	Creating a PolicyEntry object
	Working with permissions
	Adding permissions to a policy entry
	Retrieving permissions from a policy entry
	Removing a specific permission from a policy entry
	Removing all permissions from a policy entry

	Working with policy principals
	Adding a principal to a policy entry
	Retrieving a principal associated with a policy entry
	Removing a principal

	Attaching a policy entry to a policy

	Managing policies
	Registering policies
	Retrieving existing policies
	Retrieving a specific policy
	Changing the owner of a policy
	Updating policies
	Deleting Policies

	Querying policy information

	Working with Policy Server Principals
	Creating a special principal object
	Retrieving existing principals
	Retrieving groups
	Retrieving users

	Querying principal information

	Managing Documents
	Securing documents with policies
	Creating a policy-protected document
	Removing policy security from a document
	Switching document policies
	Retrieving a license from a policy-protected document

	Revoking and reinstating documents
	Revoking documents
	Reinstating documents

	Managing licenses
	Changing a policy associated with a license
	Setting an alternative Id for a license
	Retrieving existing licenses
	Retrieving a specific license
	Updating the URL of a license

	Querying license information

	Working with Watermarks
	Creating watermarks
	Creating a Watermark object

	Setting watermark attributes
	Setting the background attribute
	Setting the custom text attribute
	Setting the setDateIncluded attribute
	Setting the setHorizontalAlignment attribute
	Setting the name attribute
	Setting the opacity attribute
	Setting the rotation attribute
	Setting the scale attribute
	Setting the setUserIdIncluded attribute
	Setting the setUserNameIncluded attribute
	Setting the setVerticalAlignment attribute

	Managing watermarks
	Registering watermarks
	Retrieving existing watermarks
	Updating watermarks
	Deleting watermarks

	Querying watermark information

	Registering Event Handlers
	Events and event handlers
	Registering event handlers
	Unregistering event handlers
	Retrieving event handlers
	Modifying event handlers
	Retrieving subscribable events

	Index

