

ADOBE SYSTEMS INCORPORATED

Corporate Headquarters

345 Park Avenue
San Jose, CA 95110-2704

(408) 536-6000
http://partners.adobe.com

bbc

June 25, 2001

Technical Note #5190

Version : Acrobat 5.0

Acrobat Core API
Overview

Copyright 2001 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in
hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text are references
to the PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as
a product trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display device,” or similar item refers to a printing
device, display device or item (respectively) that contains PostScript technology created or licensed by Adobe Systems Incorporated
and not to devices or items that purport to be merely compatible with the PostScript language.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Acrobat Catalog, Acrobat Reader, Acrobat Search, Distiller,
PostScript, and the PostScript logo are trademarks of Adobe Systems Incorporated.

Apple, Macintosh, and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries.
PowerPC is a registered trademark of IBM Corporation in the United States. ActiveX, Microsoft, Windows, and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States and other countries. UNIX is a registered trademark
of The Open Group. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims
any and all warranties of merchantability, fitness for particular purposes, and noninfringement of third party rights.

Acrobat
Developer FAQ

PDF
Creation

APIs

Acrobat
 Interapplication
Communication

(IAC)

Acrobat
Core API

Extended API for
Plug-ins

Acrobat Core
API Reference

Acrobat Distiller
Parameters

Acrobat Distiller
API Reference

pdfmark
Reference

Acrobat Digital
Signature API

Reference

Acrobat Forms
API Reference

Acrobat Search
API Reference

Acrobat Weblink
API Reference

PDF Reference
Manual

Acrobat SDK
Release Notes

Acrobat Catalog
API Reference

Acrobat PDF
Writer API
Reference

Acrobat
Development

Overview

Guide to SDK
Samples

Acrobat Core
API Overview

Acrobat Plug-In
Tutorial

Acrobat IAC
Overview

Acrobat IAC
Reference

Getting Started

Acrobat Digital
Signature API

Overview

Getting Started Using the
Adobe Acrobat Software

Development Kit

Adobe Dialog
Manager Reference

Using ADM in
Acrobat

File Format
Specifications

Highlight File
Format

PDF: Changes
From Version

1.3 to 1.4

Acrobat Spelling
API Reference

PDF Consultant
(Scrubber)

Programming
Acrobat

JavaScript Using
Visual Basic

Acrobat SDK Documentation Roadmap

Acrobat Core API Overview

v

Contents

Preface . 15

Introduction. 15

Audience . 15

Assumptions . 15

How This Document Is Organized . 16

Related Documentation . 17

Conventions Used In This Document . 18

Chapter 1 Core API Overview. . 21

Ways to Integrate With the Acrobat Viewers . 21

Acrobat Core API . 22

Core API Objects. 23

Core API Methods . 24

Data Types . 26

Scalar Types . 26

Simple Types. 27

Complex Types. 27

Opaque Types . 28

Cos Objects . 28

Understanding Coordinate Systems . 28

User Space . 28

Device Space . 29

Translating between User Space and Device Space 30

Machine Port Space . 31

Using Rectangles and Quadrilaterals . 32

Handling Exceptions . 32

Adding New Object Types . 33

Storing Private Data in PDF Files . 33

Chapter 2 Core API Mechanics . 35

Host Function Tables . 35

Using HFTs . 36

Contents

vi

Acrobat Core API Overview

HFT Servers . 36

Creating a New HFT . 37

Replacing Built-In Methods . 37

Interaction Between Plug-ins and the Acrobat Viewer . 38

Locating Plug-ins . 38

Handshaking and Initialization . 39

Exporting HFTs . 40

Importing HFTs and Registering for Notifications . 40

Initialization . 41

Unloading . 42

Callbacks. 42

Notifications . 44

Enumeration . 45

Handling Events . 45

Mouse Clicks. 45

Adjust Cursor . 45

Key Presses . 46

Adding Message Handling . 46

Plug-in Prefixes . 46

Acrobat and Reader Differences . 46

Changing the Acrobat Viewer User Interface . 47

Adding or Removing Menus and Menu Items . 47

Modifying the Toolbar . 48

Controlling the “About” Box and Splash Screen . 48

Placing Plug-in Help Files In a Standard Location. 48

Page View Layers . 48

Reducing Conflicts Among Plug-ins . 49

Chapter 3 Plug-in Applications . 51

Controlling the Acrobat Viewers . 51

Drawing Into Another Window . 51

Indexed Searching . 52

Steps in the Acrobat Product’s Indexed Searching 52

Extracting Text . 53

Providing Document Security . 54

Modifying File Access . 54

Creating New Annotation Types . 54

Accessing the Info Dictionary . 54

Acrobat Core API Overview

vii

Contents

Adding Private Data To PDF Files . 55

Chapter 4 Acrobat Support . 57

ASAtom . 57

ASCab . 57

ASCab Method Naming . 58

Handling Pointers . 58

ASCab Methods . 58

ASCallback. 59

ASExtension . 59

ASFile . 60

ASFileSys . 60

ASPathName. 62

ASStm . 62

ASText . 62

Configuration . 64

Errors. 64

Fixed-point Math . 65

Fixed-point Utility Macros . 65

Fixed-point Mathematics Methods . 66

Fixed-point Matrix Methods . 66

HFT Methods. 66

Memory Allocation . 67

Platform-specific Utilities . 67

Macintosh . 67

UNIX . 67

Windows . 68

Chapter 5 Acrobat Viewer Layer . 69

General. 70

AVActionHandler . 70

AVAlert . 71

AVAnnotHandler . 71

AVApp . 71

AVCommand . 72

Invoking AVCommands Programmatically . 72

AVCommand Methods . 74

Contents

viii

Acrobat Core API Overview

AVConversion . 75

AVCrypt . 75

AVDoc . 76

AVGrafSelect . 76

AVMenu . 76

AVMenubar. 77

AVMenuItem . 78

AVPageView . 79

AVSweetPea . 79

AVSys . 80

AVTool . 80

AVToolBar . 80

AVToolButton. 81

AVWindow . 82

Chapter 6 Portable Document Layer 85

General PD Layer Methods . 86

Metadata . 86

New Metadata Features in PDF 1.4 . 86

Metadata APIs in Acrobat 5.0 . 87

PDAction . 88

PDAnnot . 88

PDBead . 89

PDBookmark . 89

PDCharProc . 90

PDDoc . 91

Querying PDDoc Permissions . 91

PDDoc Methods . 92

PDFileSpec . 93

PDFont . 94

PDForm . 96

PDGraphic . 97

PDImage . 97

PDInlineImage . 98

PDLinkAnnot . 98

PDNameTree. 99

Acrobat Core API Overview

ix

Contents

PDNumTree . 99

PDPage . 99

PDPageLabel .100

PDPath . .101

PDStyle .101

PDText .101

PDTextAnnot . .102

PDTextSelect . .102

PDThread .104

PDThumb .104

PDTrans .104

PDViewDestination. .104

PDWord .105

PDWordFinder . .106

PDXObject . .107

Chapter 7 PDFEdit—Creating and Editing Page Content 109

Introduction. .109

Overview of PDFEdit . .109

Why PDFEdit? . .109

What is PDFEdit? .110

PDFEdit Paradigm . .110

PDFEdit Classes . .111

Basic Classes .111

PDEElement Classes .113

PDEElement Attribute Classes .113

Example .114

Comparing PDFEdit to Other Core API Methods .115

Classes .115

Mapping Between PDF Operators and PDFEdit. .115

Page Contents Stream and PDFEdit Object List Correspondence 115

Enumerating Page Objects .116

Using PDFEdit versus PDWordFinder . .117

Using PDFEdit Versus PDPageAddCosContents .117

Hit Testing .117

Using PDFEdit Methods .118

Reference Counting .118

Contents

x

Acrobat Core API Overview

Matrix Operations .119

Clip Objects and Sharing .119

Marked Content .119

Cos Objects and Documents .120

XObjects and PDEObjects. .120

Resources . .120

Client Identifiers .121

Guide to Page Creation .121

Common Code Sequence . .121

Ways To Modify a Page’s Content . .122

Debugging Tools and Techniques .126

Object Dump. .126

PDFEdit Methods .128

Dump Methods. .128

General Methods .129

PDEClip .129

PDEColorSpace .129

PDEContainer .130

PDEContent .131

PDEDeviceNColors .132

PDEElement . .132

PDEExtGState . .133

Setting the Opacity of an Object . .133

PDEExtGState Methods . .133

PDEFont .134

PDEForm. .135

PDEGroup .136

PDEImage .136

PDEObject . .137

PDEPath . .137

PDEPattern .137

PDEPlace .138

PDEPS . .138

PDEShading . .139

PDESoftMask .139

PDEText .139

PDEUnknown .140

Acrobat Core API Overview

xi

Contents

PDEXGroup .140

PDEXObject .141

PDSysEncoding .141

PDSysFont . .141

Chapter 8 PDSEdit—Creating and Editing Logical Structure. 143

Introduction. .143

Why Have Logical Structure? .143

Logical Structure in a PDF Document .144

The Structure Tree . .145

Navigating a PDF Document .145

Extracting Data From a PDF Document . .145

Adding Structure Data To a PDF Document . .145

Using pdfmark to Add Structure Data to PDF . .146

PDSEdit Classes . .146

PDSTreeRoot .146

PDSElement . .146

PDSAttrObj .146

PDSMC .147

PDSOBJR . .147

PDSClassMap . .147

PDSRoleMap .147

Relationship of PDSEdit and PDFEdit . .148

Using the PDSEdit API: Examining Structure .148

Structure Tree Root .148

Structure Elements .148

Traversing Elements in a Subtree .149

Object Attributes . .150

Other Object Characteristics. .151

Element Types and the Role Map .151

Classes and the Class Map .151

Using the PDSEdit API: Creating Structure .152

Structure Tree Root .152

Structure Elements .152

Adding Marked Content to an Element .153

Adding an Object Reference to an Element . .153

Class Map . .154

Role Map. .154

Contents

xii

Acrobat Core API Overview

Chapter 9 Cos Layer . 155

Cos Objects: Direct and Indirect . .155

File structure . .156

Cos Objects in the Core API . .156

CosDoc. .157

CosObj . .157

CosArray . .157

CosBoolean .158

CosDict. .158

CosFixed . .158

CosInteger . .159

CosName .159

CosNull. .159

CosStream . .159

CosString. .160

Encryption/Decryption .160

Chapter 10 Handlers . 161

Action Handlers .162

Annotation Handlers . .162

AVCommand Handlers. .163

Creating an AVCommand Handler. .163

Exposing AVCommands to the Batch Framework164

File Format Conversion Handlers .166

File Specification Handlers. .166

Security Handlers .167

Selection Servers .167

Tools .168

Window Handlers .168

File Systems . .169

Progress Monitors .170

Transition Handlers. .171

Chapter 11 Document Security . 173

Encryption and Decryption . .173

Acrobat Core API Overview

xiii

Contents

Security Handlers .174

Adding a Security Handler . .175

Security Handler Callbacks .176

New Security Features in Acrobat 5.0 . .176

Opening a File . .177

Acrobat’s Built-in Authorization Procedure. .178

Saving a File . .179

Setting a Document’s Security. .180

Implementation Examples .180

Saving a File With a New Encryption Dictionary. .180

Opening an Encrypted File .181

Utility Methods . .181

Chapter 12 Handling Errors . 183

Exception Handlers .183

Handling an Exception Later . .186

Returning From an Exception Handler . .186

API Methods That Raise Exceptions . .188

Exception Handler Caveats .188

Don’t Use goto In a DURING...HANDLER Block .188

Don’t Nest Exception Handlers In a Single Function 189

Be Careful About Register Usage . .190

Chapter 13 Changes For This Revision 191

New Features in Acrobat 5.0 . .191

New Core API Objects . .191

Other Changes in This Document .192

Appendix A Object Interrelationships 193

Appendix B Portable Document Format 195

Relationship of Acrobat and PDF Versions .195

Introduction To PDF .195

PDF Objects .196

File Structure . .196

Document Structure .198

Page Contents . .199

Contents

xiv

Acrobat Core API Overview

Index . 201

Acrobat Core API Overview

15

Preface

Introduction

This document provides a conceptual overview of the Acrobat core application
programming interface (API). It is intended to familiarize you with the core API, as
described in detail in the

Acrobat Core API Reference

, and the Acrobat conventions
for using this interface.

The core API is used primarily by Acrobat

plug-ins

. Plug-ins can be created for the
viewers: Acrobat

®

and Acrobat Reader

®

.

N

OTE

:

Users of the Adobe PDF Library will also find much of the information in this
document helpful. The information that does

not

 apply to the PDF library are
primarily the sections on plug-in mechanics and on the AcroView (AV) layer of
the API.

Using the API, a plug-in can perform functions such as:

●

Controlling an Acrobat session

●

Customizing the Acrobat user interface

●

Augmenting existing Acrobat functions

●

Displaying Portable Document Format (PDF) documents in an application-supplied
window, without using the Acrobat viewer user interface

●

Manipulating the contents of a PDF file

●

Adding private data to PDF files

N

OTE

:

See Chapter 13, “Changes For This Revision,” for references to features that
are new to Acrobat 5.0.

Audience

The primary audience of this document is Acrobat and Acrobat Reader plug-in
developers. Developers of PDF Library applications and interapplication
communication (IAC) applications will also find much of the information helpful.

Assumptions

This document assumes that you are familiar the Acrobat product family and that you
are an experienced user of Acrobat products. You should understand ANSI-C or C++

Preface

How This Document Is Organized

16

Acrobat Core API Overview

and be familiar with programming on your development platform. If you plan to
manipulate data in PDF files, you should be familiar with the contents and structure of
PDF files, as described in the

PDF Reference

. For an overview of PDF structures, see
Appendix B in this document.

if you are new to writing plug-ins, work through some sample plug-ins in the

Acrobat
Plug-In Tutorial

. Then you can explore other sample plug-ins provided with the SDK.

How This Document Is Organized

This document is organized as follows:

●

Chapter 1, “Core API Overview,” describes the structure of the core API, its
objects, methods, and data types.

●

Chapter 2, “Core API Mechanics,” discusses a number of topics basic to plug-in
development, including the host function table mechanism, the plug-in handshake
sequence, and creating callbacks.

●

Chapter 3, “Plug-in Applications,” describes some of the things that plug-ins can
do.

●

Chapter 4, “Acrobat Support,” describes the methods for manipulating objects in
the Acrobat support (AS) layer, as well as platform-specific methods.

●

Chapter 5, “Acrobat Viewer Layer,” describes the Acrobat Viewer (AV) layer
methods for controlling the Acrobat viewer application and modifying its user
interface.

●

Chapter 6, “Portable Document Layer,” describes the portable document (PD) layer
of object methods that enable plug-ins to access and manipulate most data in a
PDF file.

●

Chapter 7, “PDFEdit—Creating and Editing Page Content,” describes PDFEdit, a
collection of objects that enable your plug-in to treat a page’s contents as a list of
objects rather manipulating content stream marking operators.

●

Chapter 8, “PDSEdit—Creating and Editing Logical Structure,” describes PDSEdit,
a collection of objects that enable your plug-in to create and examine the logical
structure in PDF files.

●

Chapter 9, “Cos Layer,” describes the Cos object methods, which provide access
to the low-level object types and file structure in PDF files.

●

Chapter 10, “Handlers,” describes handlers, a collection of methods that expand
the number of object types Acrobat supports by adding new types of tools,
annotations, actions, file systems, and so on.

●

Chapter 11, “Document Security,” describes the core API document security
features: security handlers, encryption and decryption methods, and utility
methods.

Acrobat Core API Overview

17

Preface

Related Documentation

●

Chapter 12, “Handling Errors,” covers Acrobat’s error system, providing advice on
how to write exception handlers.

●

Chapter 13, “Changes For This Revision,” lists the additions and modifications to
this document for the Acrobat SDK, Revision 5.0.

●

Appendix A illustrates object interrelationships.

●

Appendix B provides an overview of PDF structures.

Related Documentation

For more information, see the following SDK documents, which are referenced in this
overview:

● Getting Started Using the Adobe Acrobat Software Development Kit provides an
overview of the Acrobat SDK and the supporting documentation.

● Acrobat Core API Reference contains the method prototypes and details on
arguments. By using this reference online, you can copy prototypes directly into
your plug-in as you are coding it.

● Acrobat Plug-In Tutorial explains how to use the Acrobat core API to write plug-ins
for Acrobat and Acrobat Reader. It describes basic Acrobat development concepts,
provides an overview of how Acrobat interacts with plug-ins at load-time and
initialization, and includes chapters that explain and show by example how to code
various tasks that your plug-in can perform to manipulate and enhance the Acrobat
viewer user interface as well as manipulate the contents of underlying PDF
documents.

● Acrobat Development Overview provides guidelines for developing plug-ins,
including registering plug-in names and development environment requirements.

● Acrobat Forms API Reference describes the Acrobat Forms plug-in API methods.

● PDF Reference, second edition, version 1.3 describes PDF version 1.3 format in
detail, including PDF object types, file format, and document structure.

● PDF: Changes From Version 1.3 to 1.4 supplements the PDF Reference, second
edition, version 1.3, by providing PDF 1.4 format details.

● Using ADM in Acrobat describes how to create platform-independent dialogs for
your plug-in.

NOTE: In this document, references to documents that appear online (in blue, italics)
are live links. However, to activate these links, you must install the documents
on your local file system in the same directory structure in which they appear in
the Acrobat SDK. This happens automatically when you install the SDK.

If you did not install the entire SDK and you do not have all the documents,
please visit the Adobe Solutions Network Web site. to find the documents you
need. Then install them in the appropriate directories. You can use the Acrobat

http://partners.adobe.com/asn

Preface
Conventions Used In This Document

18 Acrobat Core API Overview

SDK Documentation Roadmap located at the beginning of this document as a
guide.

Additional documents that you should have available for reference are listed below.
These documents are available on the Adobe Solutions Network Web site:

● PostScript Language Reference, third edition describes the syntax and semantics
of the PostScript® language and the Adobe imaging model.

Conventions Used In This Document

Item Character Definition Use and Examples

File names Courier, 12-point C:\templates\Acrobat_docs

Code items within plain text;
parameter names in
reference documents

Courier, 12-point, bold The GetExtensionID method returns
an ASAtom object

Code examples set off from
plain text

Courier, 10-point, plain These are variable declarations:
AVMenu commandMenu,helpMenu;

Code values within plain
text

Helvetica, 11-point, plain;
(same as plain text)

The method returns true or false
A null pointer

Pseudocode Helvetica, 11-point, italic ACCB1 void ACCB2 ExeProc(void)
{
do something
}

Cross references to Web
pages

Blue text; everything else
“as-is”

The Acrobat Solutions Network URL is:
http://partners.adobe.com/asn

Cross references to titles of
other Acrobat SDK
documents

Blue text; Helvetica,
11-point, italic

See the Acrobat Core API Overview.

Cross references within a
document

Blue text; everything else
“as-is”

See Section 3.1, “Using the SDK.”
Test whether an ASAtom exists.

PostScript language
operators, PDF operators,
keywords, dictionary key
names;user interface
names

Helvetica, 11-point, bold The setpagedevice operator
The File menu

Acrobat Core API Overview 19

Preface
Conventions Used In This Document

Document titles that are not
cross-reference links to
other Acrobat SDK
documents, new terms,
PostScript variables

Helvetica, 11-point, italic Acrobat Core API Overview
filename deletefile

Item Character Definition Use and Examples

Preface
Conventions Used In This Document

20 Acrobat Core API Overview

Acrobat Core API Overview 21

1 Core API Overview

The Acrobat core API is a set of interfaces you can use to write plug-ins that integrate
with Acrobat and Acrobat Reader. This chapter introduces the core API, describing its
object orientation and organization, and a number of other concepts fundamental to
understanding the API.

Ways to Integrate With the Acrobat Viewers

You can develop software that integrates with Acrobat and Acrobat Reader in two
ways:

● By creating plug-ins that are dynamically linked to the Acrobat viewer and extend
the viewer’s functionality

● By writing a separate application process that uses interapplication communication
(IAC) to control Acrobat functionality. DDE and OLE are supported on Windows
and Apple events / AppleScript on the Macintosh .

FIGURE 1.1 Ways to integrate with Acrobat and Acrobat Reader

Through IAC interfaces, an application can control the viewer in ways the interactive
user can. A plug-in can control the viewer in the same way, but, in addition it can
extend the viewer using the much broader range of core API methods.

Your project’s scope determines which of these methods better meets your needs.
You can also use a combination approach, by creating a plug-in and a separate
application, where the application sends messages to the plug-in, and the plug-in
manipulates the Acrobat viewer.

To learn more about using IAC, refer to the Acrobat SDK documents Acrobat IAC
Overview and Acrobat IAC Reference

...

...

Acrobat Viewer

External
Application

External
Application

Plug-In Plug-In
IAC IAC

Core API Overview
Acrobat Core API

1

22 Acrobat Core API Overview

Acrobat Core API

The core API consists of a set of methods that operate on objects. The objects have
types and encapsulate their data. This object orientation is a conceptual model,
implemented using a standard ANSI C-programming interface. Methods are C
functions; objects are opaque data types. The Core API is supported on Microsoft 32-
bit Windows®, Apple Macintosh, and UNIX® platforms.

The core API methods are organized into the hierarchy shown in Figure 1.2.

FIGURE 1.2 Overview of Core API

Acrobat Viewer

The Acrobat Viewer (AV) layer (also known as AcroView or AV Model) deals with the
Acrobat viewer. Its methods allow plug-ins to manipulate components of the Acrobat
viewer application itself, such as menus and menu items.

NOTE: The AV layer is not available to users of the PDF Library.

Portable Document

The Portable Document (PD) layer (also known as PDModel) provides access to
components of PDF documents. Its methods allow plug-ins to manipulate document
components such as document pages and annotations. Closely related to the
PD layer are two method groups, each of which controls a different aspect of a PDF
document:

● PDFEdit methods deal with physical representation of a PDF document. More
specifically, PDFEdit methods treat page content as a list of objects whose values
and attributes a plug-in can modify. The methods allow your plug-in to read, write,

Acrobat Viewer (AV) Layer

Portable Document (PD) Layer

(menu selections, other user-level actions)

(bookmarks, pages, thumbnails, annotations, ...)

Cos Layer

PDFEdit
(page content)

(strings, numbers, dictionaries, ...)

Acrobat Support
(AS)

(file access,
platform-

independent
utilities, callbacks,

exceptions, ...)
PDSEdit

(structure info)

Acrobat Core API Overview 23

Core API Overview
Core API Objects

1

edit, and create page contents and page resources, which may contain fonts,
images, and so on.

● PDSEdit methods deal with the logical structure of a PDF document. A PDF
document’s logical structure is built independently of its physical representation,
with pointers from the logical structure to the physical representation, and
vice versa. PDSEdit methods store the logical structure information. They allow
your plug-in to access PDF files by means of a structure tree. Having logical
structure in PDF files facilitates navigating, searching, and extracting data from
PDF documents. For example, PDSEdit methods can obtain logically-ordered
content, independently of drawing order.

Acrobat Support

The Acrobat Support (AS) layer provides platform-independent utility functions and
allows plug-ins to override the built-in file-handling mechanisms.

Cos Layer

The Cos Object System (Cos) layer provides access to the building blocks used to
construct documents. Cos methods allow plug-ins to manipulate low-level data in a
PDF file, such as dictionary and string objects.

Platform-Specific Methods

In addition to the method groups represented in Figure 1.2, the core API includes
platform-specific plug-in utilities to handle issues that are unique to Macintosh,
Windows and UNIX platforms.

Core API Objects

Most objects accessible by AV and PD layer methods are opaque. They are, in
general, neither pointers nor pointers to pointers. They provide equivalent functionality
in that they merely reference an object’s data rather than containing it. They cannot
reliably be syntactically considered a void *. If you assign one object to another
variable, both variables affect the same internal object.

Typically objects are named using the following conventions. There are exceptions.
For example, not all pointers to structures end in P. However, your familiarity with the
conventions described here should help you recognize the types when you encounter
them in the Acrobat SDK documentation.

● The name of the concrete definition for a complex type ends in Rec, for record.

● Typically, a pointer to simple or complex type ends in P, for pointer.

● Opaque types do not contain a P suffix. For example, a PDDoc object references a
PDF document.

● Three names identify complex types that provide callback methods:

Core API Overview
Core API Methods

1

24 Acrobat Core API Overview

– Monitor: Aset of callbacks for an enumeration method (also used for
ProgressMonitor)

– Server: An implementation for a service added by a plug-in
– Handler: An implementation for a subtype of object handled by a plug-in

Callback method names typically contain the suffix Proc, for procedure.

Core API Methods

There are several types of methods in the core API. See the Acrobat Core API
Reference for complete information on all methods.

Method names generally are of the form:

<layer><object><verb><thing>,

where

● layer identifies the method’s layer (AV for Acrobat Viewer, PD for Portable
Document, Cos for Cos, and AS for Acrobat Support)

● object identifies the object upon which the method acts (for example, menu,
window, font, bookmark, annotation, dictionary, string, or file)

● verb specifies an action such as Get, Set, Acquire, Release, Create, New,
and Destroy. See Table 1.1 for a list of the most common verbs in method names.

● thing Is specific to each method, usually an object of the operation. May not always
be present.

TABLE 1.1 Verbs in API method names

New Creates a new unattached object. Example: AVMenuNew.

AddNew Creates a new object using the specified parameters and adds the new
object to the current object. Example: PDBookmarkAddNewChild.

Add Adds the second object as a child to the current object. Example:
PDBookmarkAddChild.

Create Creates a new object of a given type. Example: PDDocCreatePage.

Destroy Destroys the specified object and releases its resources immediately.
Example: PDBookmarkDestroy.

Open Opens an object from storage or a stream. Example:
AVDocOpenFromFile.

Close Destroys an object that was opened. Closes the underlying storage or
stream. Example: ASFileClose.

Acrobat Core API Overview 25

Core API Overview
Core API Methods

1

While many of the API method names follow this form, there are exceptions.
Conversion methods, for example, are of the form:
<layer><object><source_object>to<dest_object>

An example is AVPageViewPointToDevice.

Get and Set methods are used for getting and setting object attributes. Each object
type has zero or more attributes. For example, an annotation object (PDAnnot)
contains attributes such as color and date. You can obtain and modify the value of an
object’s attributes using methods such as PDAnnotGetColor and
PDAnnotSetDate.

In some cases, the return value of a Get method is another object. For example,
AVDocGetAVWindow returns an AVWindow object corresponding to a specified
AVDoc.

Other methods that return objects have the word Acquire in their name. These
methods are always paired with a corresponding Release method, and have the
additional side effect of incrementing or decrementing a reference count. The core
API uses Acquire/Release methods, for example, to determine whether or not it is
safe to free a memory structure representing an object.

If you use an Acquire method to obtain an object, you must subsequently use the
Release method to correctly update the reference counter, as shown here:

PDDoc doc;
PDPage page;

doc = PDDocOpenFromASFile ("AFILE.PDF", NULL, TRUE);

Acquire Obtains a shareable resource from a parent object. Or, increments a
reference counter for an object. The shared object isn’t destroyed until
all acquirers have released it. Example: AVMenuItemAcquire.

Release Releases a shared object. Example: PDPageRelease.

Delete Removes the second object from the current object and destroys the
second object. Example: PDDocDeletePages.

Remove Removes the second object from the current object but doesn’t destroy
it. Example: AVMenuRemove.

Get Retrieves an attribute of the object. Example: AVWindowGetTitle

Set Sets an attribute of the object. Example: PDAnnotSetFlags. (Note:
Cos uses the verb Put).

Is Retrieves a boolean attribute of the object. Example:
PDBookmarkIsOpen.

Enum Enumerates the specified descendant objects of the current object.
Example: PDDocEnumFonts.

TABLE 1.1 Verbs in API method names

Core API Overview
Data Types

1

26 Acrobat Core API Overview

page = PDDocAcquirePage (doc, 42);

/* Now we’re done with page */
PDPageRelease (page);

In the code above, note that the PDPage is acquired through the document that
contains it (using PDDocAcquirePage), and is released using PDPageRelease.
Failure to match Acquire/Release pairs generally results in Acrobat complaining
that a document cannot be closed due to non-zero reference counts.

Because the core API does not keep track of objects that do not have
Acquire/Release methods, there is no way for Acrobat plug-ins to know when such
objects are being used, and when they can be deleted safely. For this reason, the API
provides validity testing methods your plug-in can use to determine whether or not an
object previously obtained using a Get method is still usable. IsValid typically is
included in the name of a validity testing method, for example PDAnnotIsValid. You
can check if an object has an associated validity testing method by looking up the
object in the “Objects” section in the Acrobat Core API Reference.

Data Types

The core API uses five types:

● Scalar Types

● Simple Types

● Complex Types

● Opaque Types

● Cos Objects

Scalar Types

Scalar (non-pointer) types are based on underlying C language types, but have
platform-independent bit sizes. They are defined in the header file CoreExpT.h. All
scalar types are AS layer types.

For portability, enumerated types are defined using a type of known size such as
ASEnum16.

Table 1.2 lists and describes the scalar types.

TABLE 1.2 Scalar types

Type
Size
(in bytes) Description

ASBool 2 boolean

Acrobat Core API Overview 27

Core API Overview
Data Types

1

Simple Types

Simple types represent abstractions such as a rectangle or matrix. These objects
have well-known fields that are not expected to change.

Examples of simple types are:

● ASFixedRect

● ASFixedMatrix

● AVRect32

NOTE: Two different coordinate systems are used for rectangles. See “Understanding
Coordinate Systems” on page 28 for details.

Complex Types

Complex types are structures that contain one or more fields. They are used in
situations such as the following:

● To transfer a large number of parameters to or from a method. For example, the
API method PDFontGetMetrics returns font metrics by filling out a complex
structure (PDFontMetrics).

● To define a data handler or server. For example, your plug-in must provide a
complex structure filled out with callback methods (AVAnnotHandlerRec)when it
intends to register an annotation handler.

ASUns8 1 unsigned char

ASUns16 2 unsigned short

ASUns32 4 unsigned long

ASInt8 1 char

ASInt16 2 signed short

ASInt32 4 signed long

ASEnum8 1 enum (127 values)

ASEnum16 2 enum (32767 values)

ASFixed 4 fixed point integer, 16 bits for
mantissa and 16 bits for
fractional part

ASSize_t 4 size of objects (as in size_t)

TABLE 1.2 Scalar types

Core API Overview
Understanding Coordinate Systems

1

28 Acrobat Core API Overview

Because a complex type may change over time (by adding new fields or obsoleting
old ones), the size of the type is specified either as the first field of the type or as a
separate parameter to a method. A core API method can examine this field to
determine whether a new callback method is available, or whether a new data field
should be filled out.

Opaque Types

Many methods in the core API hide the concrete C-language representation of data
structures from plug-ins. Most of these methods take an object and perform an action
on that object. The objects are represented as opaque types.

Examples of opaque objects are PDDoc and AVPageView.

Cos Objects

A Cos object in the core API (type CosObj) refers to its corresponding Cos object in
the PDF document. Cos objects are represented as opaque 8-byte structures. They
have subtypes of boolean, integer, real, name, string, array, dict, and stream.

Understanding Coordinate Systems

The core API defines two coordinate systems: user space and device space. In
addition, some methods make use of a platform’s native coordinate system, which is
known as machine port space. This section describes each of these coordinate
systems.

User Space

User space specifies coordinates for most objects accessed using PD layer methods.
It is the coordinate system used within PDF files. Figure 1.3 shows the user space
coordinate system. In the figure, as in PDF, the media box is the rectangle that
represents that page’s size (for example, US letter, A4). The crop box is an optional
rectangle that is present if the page has been cropped (for example, using the
Document -> Crop Pages… menu item in Acrobat).

Acrobat Core API Overview 29

Core API Overview
Understanding Coordinate Systems

1

FIGURE 1.3 User Space Coordinate System

The default origin of the user space coordinate system is the lower left corner of a
page’s media box. The value of the x-coordinate increases to the right, and the value
of the y-coordinate increases upward. Coordinates are represented as fixed point
numbers, and rectangles are of type ASFixedRect.

Device Space

Device space specifies coordinates in screen pixels. See Figure 1.4. Plug-ins use this
coordinate system when calling AV layer methods to specify the screen coordinates of
windows.

NOTE: Device space coordinates generally are not equal to points. One point is
approximately 1/72 of an inch. Pixels and points are only nearly equivalent
when the monitor has a resolution of 72 dpi and the zoom factor is 1.0.

Media Box

Crop Box

(0,0)

Core API Overview
Understanding Coordinate Systems

1

30 Acrobat Core API Overview

FIGURE 1.4 Device Space Coordinate System

Device space defines an aperture as that portion of the Acrobat viewer’s window in
which the PDF file is drawn. The origin of the device space coordinate system is at the
upper left corner of the visible page on the screen. The value of the x-coordinate
increases to the right, and the value of the y-coordinate increases downward.
Coordinates are represented as integers, and rectangles are of type AVRect.

NOTE: The upper left corner of the visible page is determined by the intersection of a
page’s PDF crop box and media box. As a result, the device space coordinate
system changes when the cropping on a page changes.

Translating between User Space and Device Space

Sometimes a plug-in must translate user space coordinates to device space, and vice
versa.

Say, for example, you want your plug-in to draw a rectangle on top of an annotation.
You can get an annotation’s bounding rectangle with PDAnnotGetRect. This
rectangle is in user space, the coordinates of the PDF file, and is invariant of the view
of the PDF file. You can draw a rectangle with the AVPageViewDrawRect method,
but because this method is an AV layer method, it requires a rectangle in device
space coordinates. The AVPageViewRectToDevice method translates a
rectangle’s coordinates from user space to device space, so the following code would
draw the rectangle:

ASFixedRect userRect;
AVRect deviceRect;

Media Box

Aperture

Crop Box

(0,0)

Acrobat Core API Overview 31

Core API Overview
Understanding Coordinate Systems

1

PDAnnotGetRect(anAnnot, &userRect);
AVPageViewRectToDevice(pageView, &userRect, &deviceRect);
AVPageViewDrawRect(pageView, &deviceRect);

If more than one page is displayed, as in the continuous display modes of Acrobat,
coordinates in user space may be ambiguous. The problem is that user space
coordinates are relative to a page, and more than one page is displayed. This raises
the question of which page AVPageViewRectToDevice would use. To specify the
page, call the AVPageViewSetPageNum method first. The code shown above now
appears as:

ASFixedRect userRect;
AVRect deviceRect;

AVPageViewSetPageNum(pageView, annotPageNum);
PDAnnotGetRect(anAnnot, &userRect);
AVPageViewRectToDevice(pageView, &userRect, &deviceRect);
AVPageViewDrawRect(pageView, &deviceRect);

Machine Port Space

You would use Machine port space if, for example, your plug-in needs to draw on the
screen using QuickDraw (on the Macintosh platform) or GDI (on the Windows®
platform). Machine port space is shown in Figure 1.5.

If an object’s coordinates are specified in user space and a plug-in needs to draw the
object to the machine port, it must translate the points through the matrix obtained
from AVPageViewGetPageToDevMatrix. On Macintosh only, it must also subtract
the left field of the window’s aperture from the x-coordinate and subtract the top
field from the y-coordinate. The plug-in can then draw using GDI or QuickDraw.

If device space changes, any acquired machine ports are not updated to track device
space; their coordinate systems are still set to the device space in effect when the
ports were acquired.

Core API Overview
Using Rectangles and Quadrilaterals

1

32 Acrobat Core API Overview

FIGURE 1.5 Machine Port Space Coordinate System

Using Rectangles and Quadrilaterals

Rectangles (rects) and quadrilaterals (quads) are used in the core API. Both are
geometric shapes with four rectilinear sides. A rectangle is specified by two corner
points, and the rectangle’s sides are always vertical and horizontal. A quad is
specified by all four corner points, and the sides can have any orientation.

A plug-in should use rectangles as frequently as possible, because it can specify
them with half as much data as a quad requires, and they are processed more
efficiently. A plug-in should use quads when necessary, though; for example, to
specify the box containing a rotated word.

Handling Exceptions

In general, methods do not provide return values but instead raise exceptions when
errors occur.You can write exception handlers to catch and handle exceptions at
different points in your plug-in. Acrobat viewers contain a default handler to deal with
otherwise uncaught exceptions.

Chapter 12, “Handling Errors,” describes exception handling in detail.

Media Box

Crop Box

(0,0)

Acrobat Core API Overview 33

Core API Overview
Adding New Object Types

1

Adding New Object Types

Plug-ins can extend the range of objects that Acrobat understands. For example, they
can define new types of annotations and new tools. A plug-in generally adds new
types by passing to Acrobat a structure (known as a handler) containing a number of
function pointers. The number of function pointers and their purpose depend on what
object a plug-in is adding, but functions usually include those for creating, destroying,
and drawing the new object. Chapter 10, “Handlers,” describes each of the handlers a
plug-in can add.

Storing Private Data in PDF Files

Plug-ins can store private data in PDF files, although private data must be stored in
such a way that the file can still be drawn by a standard Acrobat viewer. Adobe
maintains a registry of private PDF dictionary key names to reduce the possibility of a
plug-in’s key names conflicting with names belonging to other plug-ins.

Private dictionary keys exist in three categories:

1. Specific keys that are proposed by third parties but are generally useful. Adobe
maintains a registry of these names.

2. Keys registered by third parties as well as keys whose prefix is registered that are
applicable only to a limited set of users. Adobe maintains a registry of these names
and prefixes. For more information on registering and using plug-in prefixes, see
Chapter 3 in Acrobat Development Overview.

3. Keys that begin with a special prefix reserved by Adobe for private extensions.
These keys are intended for use in files that are never seen by other third parties,
since these keys may conflict with keys defined by others.

Contact the Adobe Solutions Network Web site to register private data types.

http://partners.adobe.com/asn

Core API Overview
Storing Private Data in PDF Files

1

34 Acrobat Core API Overview

Acrobat Core API Overview 35

2 Core API Mechanics

This chapter describes many of the details needed to understand how plug-ins work
with the Acrobat core API. The chapter discusses a number of topics basic to plug-in
development, including:

● Host Function Tables

● Replacing Built-In Methods

● Interaction Between Plug-ins and the Acrobat Viewer

● Callbacks

● Notifications

● Enumeration

● Handling Events

● Adding Message Handling

● Acrobat and Reader Differences

● Changing the Acrobat Viewer User Interface

● Page View Layers

● Reducing Conflicts Among Plug-ins

NOTE: Many of these topics, but not all, apply to development with the PDF Library.

Host Function Tables

Host Function Tables (HFTs) are the mechanism through which plug-ins call methods
in the Acrobat viewer or in other plug-ins. See Figure 2.1.

An HFT is a table of function pointers. Each HFT has:

● A name

● A version number

● An array of one or more entries

Each entry represents a single method that plug-ins can call, and is set up as a linked
list of function pointers. Acrobat uses linked lists because some HFT entries may be
marked so that they can be replaced by a plug-in. Also, it is useful to keep a list of
each implementation of a method that has been replaced (to allow methods to call the
implementations they replaced).

Core API Mechanics
Host Function Tables

2

36 Acrobat Core API Overview

Using HFTs

Plug-ins must use the ASExtensionMgrGetHFT method to import each HFT they
intend to use. A plug-in requests an HFT by its name and version number. This
importing takes place during plug-in initialization, which is described in “Importing
HFTs and Registering for Notifications” on page 40.

When a plug-in calls a method in the Acrobat viewer or in another plug-in, the function
pointer at the appropriate location in the appropriate HFT is dereferenced and
executed. Macros in the Acrobat SDK’s header files hide this from you, so that
plug-ins contain only what appear to be normal function calls.

HFT Servers

Each HFT is serviced by an HFT server. The HFT server is responsible for handling
requests to obtain or destroy its HFT. As part of its responsibility to handle requests to
obtain an HFT, the server can choose to support multiple versions of the HFT. These
versions generally correspond to versions of the Acrobat viewer or of the plug-in that
exposes the HFT. The ability to provide more than one version of an HFT improves
backward compatibility by allowing existing plug-ins to continue to work when new
versions of the Acrobat viewer (or other plug-ins whose HFTs they use) are produced.
It is expected that HFT versions typically will differ only in the number—not the
order—of methods they contain. In this case, supporting different HFT versions is
straightforward, since all versions can use the same table but simply advertise it as
having different lengths.

Acrobat
application

Plug-in

Plug-in

H
FT

s
HFTs

FIGURE 2.1 Host Function Tables (HFTs)

Acrobat Core API Overview 37

Core API Mechanics
Host Function Tables

2

Creating a New HFT

Plug-ins can create their own HFTs, allowing other plug-ins to invoke one or more
methods in them. For example, the Acrobat Search plug-in creates its own HFT to
allow other plug-ins to programmatically perform cross-document searches. Plug-ins
may allow one or more methods in their own HFTs to be replaced.

To create a new HFT, use the following procedure:

1. Invoke HFTServerNew, specifying a name for the HFT server, a procedure that
returns an HFT specified by name and version number, and a procedure that
handles requests to destroy the HFT server. Your plug-in also can specify private
data.

2. Invoke HFTNew from within its HFT-providing procedure to create an empty HFT
that can hold a specified number of methods.

3. Use HFTReplaceEntry to populate the entries in the HFT with pointers to the
methods it is making available for other plug-ins to call.

For an example of how to create an HFT, see the Acrobat Plug-In Tutorial.

Replacing Built-In Methods

There are a small number methods in the Acrobat HFTs that can be replaced by plug-
ins. For example, a plug-in could use this mechanism to change the appearance of all
alert boxes displayed by the Acrobat viewer, or to override file opening behavior. For a
list of all the replaceable Acrobat and Acrobat Reader methods, see “Replaceable
Methods” in the section entitled “Lists” in the Acrobat Core API Reference.

To replace one of these methods, a plug-in calls the HFTReplaceEntry method. In
some cases, when the replacement method has finished executing, it should call the
previous implementation of the method, using the CALL_REPLACED_PROC macro, to
allow previously-registered implementations of the method (including the viewer’s
built-in implementation) to execute. Previous implementations of the method are not
called automatically; it is up to the replacement implementation to call them.

When a plug-in replaces a method in the Acrobat HFTs, it should allow its
implementation of that method to be replaced. If, for example, your plug-in replaces
the Acrobat viewer’s AVAlert method, it should not prevent other plug-ins from also
replacing AVAlert.

All plug-ins, and the Acrobat viewer, share a single copy of each HFT. As a result,
when a plug-in replaces a method’s implementation, all other plug-ins and the
Acrobat viewer also use the new implementation of that method. In addition, once a
method’s implementation has been replaced, there is no way to remove the new
implementation without restarting the Acrobat viewer.

When an HFT entry is replaced, the entry’s linked list is updated so that the newly-
added implementation is at the head of the linked list. Previous implementations, if
any, follow (in order) as illustrated in Figure 2.2.

Core API Mechanics
Interaction Between Plug-ins and the Acrobat Viewer

2

38 Acrobat Core API Overview

FIGURE 2.2 HFT Entry Replacement

Interaction Between Plug-ins and the Acrobat Viewer

A plug-in is a dynamic link library (DLL) on the Windows platform and a shared library
on the Macintosh and UNIX platforms.

NOTE: On the Windows platform, plug-in names must end in .API, not .DLL. On
UNIX, plug-in names must end in .API and the plug-in path must be specified
correctly in the .acrorc file.

This section describes the sequence of operations the Acrobat viewers perform to
initialize a plug-in and the operations a plug-in should perform in each step of the
sequence.

There are several ways in which a plug-in can register one or more of its functions
with the Acrobat viewer so that it can continue to interact with the Acrobat viewer after
initialization. These include:

● Adding menu items or toolbar items that call the plug-in’s routines.

● Registering a routine to be called when a certain event occurs (these routines are
called notifications).

● Replacing an existing Acrobat viewer method, such as the method that opens files.

● Registering to receive Interapplication Communication (IAC) messages that other
applications send to Acrobat viewer.

Locating Plug-ins

When it launches, Acrobat searches for plug-ins. It searches a directory named
Plug-Ins in the same directory as the Acrobat viewer executable. In addition,

Entry 1

Replace
HFT Entry 3
twice and

HFT Entry n-1
once

Entry 2

Entry n - 1

Entry n

Entry 3

Entry n - 2

Entry 4

Entry 1

Entry 2

myOtherEntry Entry n - 1

Entry n

myEntry yourEntry Entry 3

Entry n - 2

Entry 4

Acrobat Core API Overview 39

Core API Mechanics
Interaction Between Plug-ins and the Acrobat Viewer

2

Acrobat searches any folders contained inside these folders when looking for plug-
ins. This search only goes one level deep.

Windows plug-ins are identified by the .API suffix. Macintosh plug-ins must have a
file type and creator of XTND and CARO, respectively.

The Acrobat viewer displays a progress message in the bottom line of the splash
screen while it initializes. No plug-ins load if the Shift key is held down while the
Acrobat viewer launches.

Handshaking and Initialization

The Acrobat viewer performs a handshake with each plug-in as it is opened and
loaded. During handshaking the plug-in specifies its name, several initialization
procedures, and an optional unload procedure.

The plug-in must implement the following handshaking function:

ACCB1 ASBool ACCB2 PIHandshake(ASUns32 handshakeVersion, void, *hsData)

During handshaking, the plug-in receives the hsData data structure shown in
Table 2.1 (see PIVersn.h). The Acrobat viewer converts all function pointers that
are passed in this data structure into callbacks using ASCallbackCreateProto.
See “Callbacks” on page 42 for more information.

TABLE 2.1 Handshake data structure

handshakeVersion (Passed to the plug-in)
The version of the handshaking data structure used. Currently HANDSHAKE_V0200.

extensionName (Required)
The ASAtom corresponding to the plug-in’s name. You can covert the plug-in’s name
to an ASAtom using ASAtomFromString. The name should be less than 25
characters.

PluginExportHFTs (Optional)
Only plug-ins that provide methods that other plug-ins can call use this callback
procedure. The Acrobat viewer calls PluginExportHFTs after it completes
handshaking with all plug-ins. The only task this callback should perform is to export
the plug-in’s own methods.

PluginImportReplaceAndRegister (Optional)
The Acrobat viewer calls this callback procedure after it has loaded all plug-ins and
the plug-ins have exported their methods. Plug-ins should use this callback to import
any methods they use from other plug-ins, replace functions in the Acrobat API, and
register for notifications. If your plug-in replaces any API methods, it must do so in
this procedure; methods must not be replaced at any other time.

NOTE:Your plug-in can register and unregister for notifications at any time; it does
not have to do so in this procedure. On the other hand, if any method
replacement is to be performed, it must be done in this procedure.

Core API Mechanics
Interaction Between Plug-ins and the Acrobat Viewer

2

40 Acrobat Core API Overview

The plug-in must fill in its extension name and implement, at minimum, the
initialization callback PluginInit.

The DUCallbacks.h header file declares all callbacks for your plug-in. Declarations
are:

ACCB1 ASBool ACCB2 PluginExportHFTs(void);
ACCB1 ASBool ACCB2 PluginImportReplaceAndRegister(void);
ACCB1 ASBool ACCB2 PluginInit(void);
ACCB1 ASBool ACCB2 PluginUnload(void);

All callbacks return true if your plug-in’s procedure completes successfully or if the
callbacks are optional and are not implemented. If your plug-in’s procedure fails, the
callbacks return false.

NOTE: In addition to defining the callbacks listed above, DUCallbacks.h includes
the the Adobe Dialog Manager header file ADMUtilities.h.

If either the Acrobat viewer or a plug-in aborts handshaking, the viewer displays an
alert dialog showing a brief explanation. Then it continues loading other plug-ins.

Exporting HFTs

After the Acrobat viewer finishes handshaking with all the plug-ins, it calls each
plug-in’s PluginExportHFTs callback procedure. In this procedure, a plug-in may
export any HFTs it intends to make available to other plug-ins. This callback should
only export an HFT, not call any Cos, PD, or AV layer methods.

NOTE: This is the only time at which a plug-in can export an HFT.

Importing HFTs and Registering for Notifications

After the Acrobat viewer completes calling each plug-in’s PluginExportHFTs
callback procedure, it calls each plug-in’s PluginImportReplaceAndRegister
callback procedure. In this procedure, plug-ins may perform three tasks:

PluginInit (Required)
The Acrobat viewer calls this callback procedure after it finishes calling each
plug-in’s PluginImportReplaceAndRegister callback procedure.
PluginInit finishes initializing the plug-in and adds the plug-in’s menus, menu
items, and so on.

PluginUnload (Optional)
Upon exit, the Acrobat viewer calls this callback procedure to release memory,
undoes any changes the plug-in made to the Acrobat viewer user interface, and
so on.

TABLE 2.1 Handshake data structure (Continued)

Acrobat Core API Overview 41

Core API Mechanics
Interaction Between Plug-ins and the Acrobat Viewer

2

● Plug-ins may import any special HFTs they use (the standard Acrobat viewer
HFTs are automatically imported). Plug-ins also may import HFTs any time after
this while the plug-in is running.

● Plug-ins may replace any of the Acrobat viewer’s replaceable methods (see
“Replacing Built-In Methods” on page 37). Any method replacement must be
performed at this time.

● Plug-ins may register for notifications (see AVAppRegisterNotification).
Plug-ins also may register and unregister for notifications any time after this while
the plug-in is running. A plug-in may receive a notification any time after it has
registered for it, even if the plug-in's initialization callback has not yet been called.
This can occur if another plug-in initializes first and performs an operation, such as
creating a PDF document, which causes a notification to be sent. Plug-ins must be
prepared to correctly handle notifications as soon as they register for them.

This callback should not call any Cos, PD, or AV layer methods.

NOTE: This is the only time a plug-in may import an HFT or replace a standard API
method. Plug-ins may register for notifications at this time or any time
afterward.

Initialization

After the Acrobat viewer completes calling each plug-in’s
PluginImportReplaceAndRegister callback procedure, it calls each plug-in’s
initialization procedure. Plug-ins should use their initialization procedures to hook into
the Acrobat viewer’s user interface by adding menu items, toolbar buttons, windows,
and so on. It is also acceptable to modify the viewer’s user interface later when the
plug-in is running.

If your plug-in needs to carry out a task after all plug-ins have been initialized, it
should register for the AVAppDidInitialize notification. This notification is
broadcast when the Acrobat viewer has finished initializing and is about to enter its
event loop.

Core API Mechanics
Callbacks

2

42 Acrobat Core API Overview

Unloading

A plug-in’s unload procedure should free any memory the plug-in allocated and
remove any user interface changes it made. Acrobat calls this procedure when the
viewer terminates or when any of the other handshaking callbacks return false. This
function should:

● Remove and release all menu items and other user interface elements, HFTs, and
HFTServers .

● Release any memory or any other resources allocated.

Currently, plug-ins unload only when the Acrobat viewer exits.

Callbacks

There are several situations in the core API where Acrobat will call routines that your
plug-in has provided . These include:

● The PIHandshake routine

● When deciding to enable or mark items in menus or in the toolbar

● When menu items or toolbar buttons are clicked

● In enumeration methods

● Dialogs (filter procs, and so forth)

● Notifications

Whenever your plug-in passes a function pointer to the Acrobat viewer, it must first
turn it into an ASCallback object. This allows the compiler to check that the correct
prototypes are used for the functions for which callbacks are created.

Use ASCallbackCreateProto, ASCallbackCreateReplacement, and
ASCallbackCreateNotification to convert functions into callbacks and to
perform type checking on the function being converted.

NOTE: Type checking only occurs if the DEBUG macro is set to 1 at the time your
plug-in is compiled. Be sure to set it appropriately in your development
environment and remove it when you build the shipping version of your plug-in.

You can create a callback using this example as a template:

myProcType myCallback = ASCallbackCreateProto(myProcType, &myProc);

where myProc is the procedure to be converted into a callback, and myProcType is
the procedure’s type. The type checking performed is important, because it eliminates
an extremely common source of bugs.

ASCallbackCreateProto returns a pointer to a function that may be directly called
by any plug-in or the viewer application. Use ASCallbackDestroy to dispose of a
callback that is no longer needed.

Acrobat Core API Overview 43

Core API Mechanics
Callbacks

2

All callbacks must be declared with Pascal calling conventions. To make your code
portable between platforms, declare all your callback functions using the ACCB1 and
ACCB2 macros, for example:

static ACCB1 const char* ACCB2 getThingName(Thing* foo);

Declare any function pointer typedefs using the ACCBPROTO1 and ACCBPROTO2
macros, for example:

typedef ACCBPROTO1 const char* (ACCBPROTO2* fooProc) (Thing* foo);

You can use this example as a template to set up an AVMenuItem using callbacks:

/* All AVExecuteProcs must be declared with ACCB1/2 */

static ACCB1 void ACCB2 executeMyItem(void* clientData)
{

AVAlertNote("There is a document open.");
}
static ACCB1 boolean ACCB2 isMyItemEnabled(void* clientData)
{

return (AVAppGetNumDocs != 0);
}

static ACCB1 boolean ACCB2 isMyItemMarked(void* clientData)
{

return false;
}
/* We do not need to use ACCB1/2 with this function, because it is not
being called from outside this plug-in. */

static void SetUpMyMenuItem(void)
{
AVMenuItem menuItem = AVMenuItemNew("My Item", NULL, NULL, false,

NO_SHORTCUT, NULL, gExtensionID);

/* We must use ASCallbackCreateProto on our execute proc, because it
will be called from outside the plug-in */

AVMenuItemSetExecuteProc(menuItem,
ASCallbackCreateProto(AVExecuteProc, &executeMyItem), NULL);

/* Ditto for the compute-enabled proc and compute-marked proc */

AVMenuItemSetComputeEnabledProc(menuItem,
ASCallbackCreateProto(AVComputeEnabledProc, &isMyItemEnabled),
NULL);

AVMenuItemSetComputeMarkedProc(menuItem,
ASCallbackCreateProto(AVComputeMarkedProc, &isMyItemMarked), NULL);

}
ACCB1 boolean ACCB2 initMyPlugin(void)
{

SetUpMyMenuItem;

Core API Mechanics
Notifications

2

44 Acrobat Core API Overview

}

Notifications

The core API provides a notification mechanism so that plug-ins can synchronize their
actions with Acrobat. Notifications allow a plug-in to indicate that it has an interest in a
specified event (such as an annotation being modified) and provide a procedure that
Acrobat calls each time that event occurs.

NOTE: See “Notifications” in the Acrobat Core API Reference for a complete list of
notifications.

To receive notifications, follow these steps:

1. Use the ASCallbackCreateNotification macro to convert your procedure
into a callback to be passed to the notification.

NOTE: ASCallbackCreateNotification only performs type checking if you
have defined the DEBUG macro as 1 before compiling your plug-in.
Remember to define DEBUG as 0 before compiling a shipping version of
your plug-in.

2. Call the AVAppRegisterNotification method to have your function called
back for a particular event.

3. Call AVAppUnregisterNotification if your plug-in is registered for a
particular notification and no longer wants to receive notifications for it.

NOTE: Remember to pass the same ASCallback you created with your function.
Passing a pointer to your function, rather than the ASCallback you
created, into AVAppUnregisterNotification is a common mistake.

The order in which notifications occur varies among platforms. For instance, after
opening an AVDoc, notifications may occur in this order on the Macintosh platform:

1. AVPageViewDidChange

2. AVDocDidActivate

3. AVPageViewDidChange

4. AVDocDidOpen

On the Windows platform, notifications may occur in this order:

1. AVPageViewDidChange

2. AVDocDidOpen

3. AVDocDidActivate

4. AVPageViewDidChange

Acrobat Core API Overview 45

Core API Mechanics
Enumeration

2

NOTE: A plug-in may receive a notification at any point after registering for one, even if
the plug-in’s initialization procedure hasn't been called yet. Plug-ins need to
allow for this possibility.

Enumeration

The core API provides several methods that enumerate all objects of a particular type.
This can be useful, either because there is no way to access the objects (such as
PDPaths) directly, or for convenience (such as using PDDocEnumFonts to
enumerate all fonts used in a document).

When these methods are called, the Acrobat viewer enumerates the specified
objects, and calls a plug-in-specified callback procedure for each object of that type.
For example, when PDDocEnumFonts is called, Acrobat enumerates all fonts used in
the document, calling a procedure provided for each font it finds. Enumeration is
complete after the enumeration method returns.

Your plug-in can call an enumeration method and create an array of found elements to
be used later. Alternately, your plug-in can search for a particular item and, upon
finding the item, stop the enumeration and immediately return. Using enumeration
methods, your plug-in can find any toolbar or menu item, or any number of elements
on a page.

Enumeration methods may take a monitor as a parameter. A monitor is a C structure
that contains pointers to one or more plug-in-supplied callback procedures. The API
calls one or more of the functions defined in the monitor for each object in a list. One
method that uses a monitor is PDPathEnum, which provides a set of callbacks for
each path object in a page’s display list (list of marking operations that represent the
displayed portion of a page). This allows a plug-in to be aware of (but not to alter the
rendering of) the path objects in a page.

Handling Events

Mouse Clicks

Mouse clicks are first passed to any procedures registered using
AVAppRegisterForPageViewClicks. If all of those procedures return false, the
click is passed to the active tool. If that returns false, the click is passed to any
annotation at the current location.

Adjust Cursor

Adjust cursor events are first passed to any procedures registered using
AVAppRegisterForPageViewAdjustCursor. If all of those procedures return

Core API Mechanics
Adding Message Handling

2

46 Acrobat Core API Overview

false, the event is passed to the active tool. If that returns false, the event is passed to
any annotation at the current location.

Key Presses

Key presses are first passed to the currently active selection server. If the selection
server's AVDocSelectionKeyDownProc callback returns false, the Acrobat
viewer handles special keys (Esc, Page Up, Page Down, …) or uses the key to select a
tool from the toolbar.

Adding Message Handling

Plug-ins can add their own Apple events and DDE messages to those supported by
the Acrobat viewers. On Windows, plug-ins can register to receive DDE messages
directly.

NOTE: Plug-ins should use the DDEML library to handle DDE messages. Problems
may arise if they do not.

On the Macintosh, plug-ins must hook into the Acrobat viewer’s Apple event handling
loop to handle Apple events. To do this, replace the API’s
AVAppHandleAppleEvent method (see “Replacing Built-In Methods” on page 37).
If a plug-in receives an Apple event it does not want to handle, it should invoke the
implementation of the method it replaced, allowing other plug-ins or the Acrobat
viewer the opportunity to handle the Apple event.

The viewers on UNIX® do not currently provide built-in IAC support, but plug-ins can
add IAC support via RPC or other mechanisms.

Plug-in Prefixes

You also should observe the conventions for naming and registering your plug-in and
parts that it may contain such as HFTs, menus, menu items, and so forth. For details,
see Chapter 2, “Registering and Using Plug-in Prefixes,” in the Acrobat Development
Overview.

Acrobat and Reader Differences

Both Acrobat and Reader accept plug-ins. The difference between the two is that
Reader can neither make changes to a file nor save a file. the Reader does not
include API methods that change or save files.

Acrobat Core API Overview 47

Core API Mechanics
Changing the Acrobat Viewer User Interface

2

NOTE: Reader only accepts Reader-enabled plug-ins. Contact Adobe’s Developer
Technologies group for information on the licensing terms for creating
Reader-enabled plug-ins.

Plug-ins that cannot function fully under Reader must use the
ASGetConfiguration method to check which of the Acrobat viewers is running.
Failure to do so will, at best, expose the user to a variety of error alerts. If such a
plug-in finds that it is running under Reader, it should usually notify the user that it
cannot function fully, then proceed in one of several ways:

● Not load.

● Omit toolbar buttons and menu items that enable editing.

● Display disabled (grayed-out) toolbar buttons and menu items that enable editing.

Plug-ins that need to check whether or not they are running under Reader should do
so as early in initialization as possible (see “Interaction Between Plug-ins and the
Acrobat Viewer” on page 38 for a discussion of initialization).

Plug-ins that create and manipulate custom annotations should allow their
annotations to be displayed (they cannot be created, deleted, or edited) when running
under Reader.

Changing the Acrobat Viewer User Interface

This section describes the kinds of things a plug-in can do to change the Acrobat
viewer user interface.

Adding or Removing Menus and Menu Items

Plug-ins can add new menus and add items to any menu. They can also can remove
any menu or menu item.

Menu items added by plug-ins can have shortcuts (keyboard accelerators). The
Acrobat viewer does not ensure that plug-ins add unique shortcuts, but it is possible
for a plug-in to check which shortcuts are already in use before adding its own. Note
that the only way to ensure there are no shortcut conflicts is for all plug-ins to check
for conflicts before adding their own shortcuts.

You are encouraged to have your plug-in add its menu items to the Tools menu. When
it is launched, the Acrobat viewer automatically adds this menu, as well as the About
Plug-ins and Plug-in Help menus. After Acrobat loads all plug-ins, it checks these
three menus and removes any that are empty.

Adobe keeps a registry of plug-in menu item names to help avoid conflicts between
plug-ins. For more information on registering and using plug-in prefixes, see
Chapter 3 in the Acrobat Development Overview.

Core API Mechanics
Page View Layers

2

48 Acrobat Core API Overview

Modifying the Toolbar

Plug-ins can add items to the toolbar, although the size and resolution of the user’s
monitor can limit the number of tool buttons that can be added.

Plug-ins can remove buttons from the toolbar.

Plug-ins also can also create new toolbars, called flyouts, that can be attached to
buttons on the main toolbar. The selection tools, for example, are all on a flyout. As of
Acrobat 4.0, it is no longer true that all tool buttons are located on the main toolbar;
some may be located on a flyout.

Controlling the “About” Box and Splash Screen

Plug-ins can set values in the preferences file (using the AVAppSetPreference
method) to prevent the Acrobat viewer “About” box and/or splash screen from
appearing before the viewer displays the first document. These changes take effect
the next time the Acrobat viewer is launched.

About Acrobat Plug-Ins is a standard menu item in the Help menu. This menu item
contains a submenu. You are encouraged to have your plug-in add a menu item to the
submenu to bring up its own “About” box.

Placing Plug-in Help Files In a Standard Location

The Help directory that accompanies the Acrobat viewer application provides a
standardized location for your plug-in help files. In Acrobat 4.0 and later, you can
place a help file either in this Help directory or in a subdirectory of the Help directory.
If, for example, your plug-in is localized for Japanese, you might want to place its
Japanese help file in a Help_JPN subdirectory. To aid in opening locale-specific help
files, the core API provides the AVAppOpenHelpFile method.

Page View Layers

The Acrobat viewer’s drawing and mouse click processing relies on the concept of
page view layers, which are numbers of type ASFixed that are associated with the
document itself and each annotation type. The following table shows the predefined
layers used by the Acrobat viewer.

Layer Item

0 Page contents

LINK_LAYER (1) Links

NOTE_LAYER (3) Closed notes. Open notes are just above this.

Acrobat Core API Overview 49

Core API Mechanics
Reducing Conflicts Among Plug-ins

2

These layers are used in the following situations:

● Drawing: the layers are drawn from lowest to highest. As indicated in the table, the
page contents are drawn first, followed by links, closed text notes, and finally open
text notes. As a result, open text notes draw over any closed text notes they
overlap.

● Mouse click processing: occurs from highest layer to lowest layer. When a mouse
click occurs, it is first passed to any open text note at the mouse click’s location,
then any closed text note, then any link, and finally to the page view itself.However,
mouse clicks are passed to a lower layer only if a higher layer declines to handle
the mouse click by returning false from its DoClick callback. (See the callbacks
section of the Acrobat Core API Reference for a discussion of the various
DoClickProc callbacks).

Annotation handlers provided by plug-ins can reside in any layer. (See “Annotation
Handlers” on page 162 for more information.) For example, a plug-in could choose for
its annotations to be between the page contents and links, such as in layer 0.5
(because layers are numbers of type ASFixed).

An annotation handler’s AVAnnotHandlerGetLayerProc callback is called during
screen updates and mouse clicks to return its layer. Using a callback rather than a
constant value allows an annotation’s layer to change, if desired. For example, the
Acrobat viewer’s built-in text annotation changes its layer, allowing open text
annotations to receive mouse clicks before closed annotations, if both are at the
mouse click location. (On the other hand, the viewer’s built-in link annotation does not
change its layer.)

NOTE: The Acrobat viewer does not poll AVAnnotHandlerGetLayerProc callbacks
for changes in value, so be sure to invalidate the page rectangle of an
annotation when its layer changes.

Reducing Conflicts Among Plug-ins

Most plug-ins can run without concern for what other plug-ins might be running at the
same time. However, certain circumstances exist during which conflicts can arise.
Specifically, if more than one plug-in overrides the same menu item or replaces the
Acrobat viewer’s file access procedures, there is a possibility for conflict. To minimize
this problem, you should code your plug-in such that it performs its special function.
When it is done, it should then call the function it overrode. Coding your plug-in in this
manner “reduces” the problem to the order in which conflicting plug-ins get to run,
rather than to the plug-in that runs and locks out all others.

Core API Mechanics
Reducing Conflicts Among Plug-ins

2

50 Acrobat Core API Overview

Acrobat Core API Overview 51

3 Plug-in Applications

The Acrobat core API allows its clients to manipulate PDF file contents, to enhance
and customize the Acrobat viewers to perform specialized functions, or to better
integrate with existing environments. This chapter briefly describes some of the many
possibilities and refers you to the corresponding sections of this document.

NOTE: Adobe may supply implementations of some of these applications with its
products.

Controlling the Acrobat Viewers

Plug-ins can control the Acrobat viewer almost as if it were the user. All menu
commands are available, plus additional functionality normally available from
keyboard and mouse operations. Acrobat viewers can be instructed to run in the
background or while they are minimized as icons.

For a discussion of menus, see

● “AVMenu” on page 76

● “AVMenubar” on page 77

● “AVMenuItem” on page 78

For a discussion of tool buttons, see

● “AVTool” on page 80

● “AVToolBar” on page 80

● “AVToolButton” on page 81

Drawing Into Another Window

Plug-ins can have the Acrobat viewer draw into an arbitrary window, allowing plug-ins
to support PDF file viewing within their own user interface.

NOTE: It is also possible to draw into an arbitrary window using the interapplication
communication (IAC) support present in the Acrobat viewers, as described in
Acrobat IAC Overview and Acrobat IAC Reference. If you are interested in
drawing into your own window, you should also read those documents to
understand whether IAC or a plug-in is more appropriate for your needs.

Plug-in Applications
Indexed Searching

3

52 Acrobat Core API Overview

When a plug-in redirects the Acrobat viewer’s rendering into another window, the
plug-in must handle mouse and keyboard events, make API calls for scrolling, change
pages, zoom, or otherwise alter the view of the PDF file.

For more information, see the PDPageDrawContentsToWindow method in
“PDPage” on page 99.

Indexed Searching

Indexed searching enables you to catalog, index, search, and highlight text in PDF
files.

Regardless of document file format, simple sequential text searching is generally too
time-consuming for long documents, and completely inadequate for searching a
collection of documents.

Text retrieval systems overcome this problem by building a search index containing
information on the location of all words in each document in the collection. A search
system uses this index to determine which documents—and word locations within
those documents—satisfy a given query. The search system then allows a user to
browse the found documents, optionally displaying or highlighting the “hits,” or
matching items.

Steps in the Acrobat Product’s Indexed Searching

The Acrobat core API enables plug-ins to extract the data necessary to build search
indexes, open documents in an Acrobat viewer, and highlight words on pages.
Searching is not limited to page text. Text in annotations, bookmarks, and document-
level attributes like Title and Subject can all be indexed and searched.

There are three steps to an indexed search of a PDF document. You can use one
application for all three, or a separate application for each step.

1. Adding document-level information (optional)

In this step, you add to PDF files document-level information such as title, subject,
author, and keywords. This Document Info allows users to locate specific
documents easily, much like the card catalog in a paper-based library. Use of
document-level fields to enhance searching is known as fielded search in many
document retrieval systems.

Store document-level attributes in the Info dictionary in the PDF file format.
Plug-ins can use the PDDocGetInfo and PDDocSetInfo methods to read and
modify document info fields.

Acrobat products, version 2.0 and higher, provide several ways to add document
info fields to PDF files. The Distiller application and PDFWriter allow these fields to
be set while generating a PDF file, and Acrobat allows users to edit Document Info
fields.

Acrobat Core API Overview 53

Plug-in Applications
Indexed Searching

3

2. Indexing

Indexing applications use the PDWordFinder object to extract text from PDF files
and build a search index in a table or file. Through PDWordFinder, plug-ins can
obtain the character or word offset of each word in a PDF file, and length of each
word. A plug-in can use the PDDocGetInfo method to obtain document-level
attributes for it to index.

3. Searching and displaying search results

Through a user interface or some other means, a search application:
– Obtains a word or phrase to be found.
– Uses the search index and other API functions to open documents in an Acrobat

viewer, display appropriate pages, and highlight targeted words.

Highlighting is limited to page text; text in an annotation or a bookmark cannot
be highlighted. An plug-in can, however, select and show any annotation or
bookmark in the document using the PDF file’s Document Info fields as search
criteria.

Extracting Text

The core API does not specify or constrain indexing applications. Your plug-in can
create search indexes as desired. For example, some plug-ins add the search index
filename to the PDF file’s Info dictionary so that intra-document searching can be
performed without the user having to specify the location of the search index.

Text is extracted in the same order as it occurs in the page’s display list. This often is
not the order in which a user would read the text. The application in which the original
file was created determines the order in which text appears in the PDF file; different
applications differ greatly.

NOTE: The order in which text appears in a file can affect phrase searches, proximity
searches, and the operation of “next occurrence” functions.

In addition, individual words may be split into two or more pieces because PDF
creators may emit kerned or differently-styled pieces of words at a different point in
the page-generation sequence. The core API’s word extraction algorithm attempts to
reconstruct words by looking at the position and spacing of individual characters, and
even handles the case in which words are hyphenated across lines.

In addition to the text of a word, plug-ins can also obtain the character and word offset
from the beginning of the page and the number of characters in the word. This
information is used to highlight the appropriate words in the Acrobat viewer during a
search.

“PDStyle” on page 101, “PDWord” on page 105, and “PDWordFinder” on page 106
describe the methods to obtain word, font, size, location and style information from a
document.

Plug-in Applications
Providing Document Security

3

54 Acrobat Core API Overview

Providing Document Security

PDF files may be encrypted, so that only authorized users can read them. In addition,
the owner of a document can set permissions that prevent users from printing the file,
copying text and graphics from it, or modifying it. Plug-ins can use the core API’s built-
in security, or they can write their own security handlers to perform user authorization
in other ways (for example, by the presence of a specific hardware key or file, or by
reading a magnetic card reader). See Chapter 11, “Document Security,” for more
information.

Modifying File Access

Plug-ins can provide their own file access procedures that read and write data when
requested by the Acrobat core API. Using this capability, a plug-in can enable PDF
files to be read from on-line systems, e–mail, document management, or database
programs.

In addition, plug-ins can allow other file formats to be imported to, or exported from,
PDF using custom file access procedures. For importing, the random-access nature
of PDF files makes it probable that the plug-in will have to write a complete PDF file to
a local disk and use the core API to open that file.

For a discussion, see

● “ASFileSys” on page 60

● “File Specification Handlers” on page 166

Creating New Annotation Types

Plug-ins can create their own annotation types, including any data they need. For
example, a custom annotation type might allow a user to draw (not just type) in an
annotation, provide support for multiple fonts or text styles, or support annotations
that can only be viewed by specific users.

For more information on annotations, see “PDAnnot” on page 88.

For information on adding a handler for a new annotation type, see “Annotation
Handlers” on page 162.

Accessing the Info Dictionary

In addition to retrieving and setting values for the four standard fields in the PDF Info
object, plug-ins can add, modify, query, and delete fields of their own.

Acrobat Core API Overview 55

Plug-in Applications
Adding Private Data To PDF Files

3

For more information, see the PDDocGetInfo and PDDocSetInfo methods in
“PDDoc” on page 91.

Adding Private Data To PDF Files

Plug-ins can add their own private data to PDF files, subject to the constraint that the
data added must not interfere with the viewing of the PDF file by an Acrobat viewer
that does not have the plug-in needed to interpret the private data.

For additional information, see Chapter 9, “Cos Layer.”

Plug-in Applications
Adding Private Data To PDF Files

3

56 Acrobat Core API Overview

Acrobat Core API Overview 57

4 Acrobat Support

The Acrobat Support (AS) layer of the core API provides a variety of utility methods,
including platform-independent memory allocation and fixed-point math utilities. In
addition, it allows plug-ins to replace low-level file system routines used by Acrobat
(including read, write, reopen, remove file, rename file, and other directory
operations). This enables Acrobat to be used with other file systems, such as on-line
systems.

Several AS methods return error codes rather than raising exceptions on errors. This
is because these methods are called at a low level where exception handling would
be inconvenient and expensive.

This chapter summarizes the AS objects and methods supported by the Acrobat core
API. See the Acrobat Core API Reference for a detailed description of all methods.

This chapter also describes a set of platform-specific methods.

ASAtom

ASAtoms are hashed tokens that Acrobat uses in place of strings to optimize
performance (it is much faster to compare ASAtoms than strings). ASAtom methods
convert between strings and ASAtoms. Some of the ASAtom methods and the tasks
they perform include:

ASCab

ASCab objects (cabinets) can be used to store arbitrary key-value pairs. The keys are
always null-terminated strings containing only low-ASCII alphanumeric characters. An
ASCab owns all the non-scalar data inside it That is, when a plug-in places a value
inside a cabinet, the ASCab now manages the value and frees it when the key is
destroyed. If, for example, a plug-in creates an ASText object and adds it as a value
to an ASCab, that ASText object is no longer owned by the plug-in: it is owned by the
ASCab. The ASCab destroys the ASText object when the object’s associated key is
removed or its value is overwritten.

ASAtomFromString Converts a string to an ASAtom.

ASAtomGetString Gets a string, given an ASAtom.

Acrobat Support
ASCab

4

58 Acrobat Core API Overview

ASCabs are used to stored data used by some of the new Acrobat 5.0 APIs including
AVCommand, AVConversion, and batch security features (see “New Security
Features in Acrobat 5.0” on page 176).

ASCab Method Naming

The ASCab naming conventions indicate how the ASCab methods work. The
conventions are as follows:

● Get methods return a value. These objects are owned by the ASCab and should
not be altered or destroyed by the caller of Get.

● GetCopy methods make a copy of the data; the GetCopy caller owns the resulting
information and can do whatever it wants with it.

● Detach methods work the same way as Get methods, but the key is removed
from the ASCab without destroying the associated value, which is passed back to
the caller of Detach.

Any of the ASCab methods can take a compound name or string consisting of multiple
keys, each of which is separated by a colon (:) character. This format is:

Grandparent:Parent:Child:Key

Acrobat burrows down through such a compound string until it reaches the most
deeply nested cabinet.

Handling Pointers

Normally, pointers are treated like scalars (e.g. integers) in an ASCab: the ASCab
passes the pointer value back and forth but does not own the data pointed to.

If, however, the pointer has an associated destroyProc, this is no longer the case.
When the destroyProc is set, the ASCab reference counts pointers to track how
many times the pointer is being referenced from any ASCab. For example, the
reference count is incremented whenever the pointer is copied via ASCabCopy.
Detaching a pointer removes one reference to the pointer but does not destroy the
associated data. The data is destroyed by a call to the destroyProc when the
reference count is 0.

ASCabDetachPointer returns a separate value indicating whether the pointer can
safely be destroyed or if it still is being referenced by other key/value pairs inside
ASCabs.

ASCab Methods

ASCab methods include:

ASCabCopy Copies all key-value pairs from one cabinet into
another.

Acrobat Core API Overview 59

Acrobat Support
ASCallback

4

ASCallback

Callbacks allow the Acrobat viewer to call functions in a plug-in. The core API
provides macros to create and destroy callbacks. These include
ASCallbackCreateProto, ASCallbackCreateReplacement, and
ASCallbackCreateNotification (defined in PICommon.h) and
ASCallbackDestroy. These macros (which eventually call the macro
ASCallbackCreate) allow compilers to perform type checking, eliminating an
extremely common source of bugs.

NOTE: For these macros to perform type checking, you must #define DEBUG 1
before compiling. Remember to #define DEBUG 0 before compiling a
shipping version of your plug-in.

It is sometimes necessary for a plug-in to call ASCallbackCreate directly; for
example, when it is passing function pointers without typedefs to the Macintosh
toolbox routines.

ASExtension

An ASExtension represents a specific plug-in. An unique ASExtension object is
created for each plug-in when it is loaded. If the plug-in fails to initialize, the
ASExtension will remain but is marked as dead. ASFile methods include:

ASCabDestroy Destroys a cabinet and all its key-value pairs.

ASCabDetachCab Retrieves a cabinet stored as a key in another cabinet,
and removes the key.

ASCabGetInt Gets an integer value from a cabinet.

ASCabGetPointer Gets a pointer value from a cabinet.

ASCabGetStringCopy Gets a copy of a string in a cabinet.

ASCabNew Creates a new, empty cabinet.

ASCabRemove Removes a key from a cabinet, destroying the
associated value.

ASEnumExtensions Enumerates all ASExtensions.

Acrobat Support
ASFile

4

60 Acrobat Core API Overview

ASFile

The ASFile interface encapsulates Acrobat’s access to file services. It provides a
common interface for Acrobat viewers, applications, and plug-ins to access file
system services on different platforms, and enables you to provide your own file
storage implementations.

Three objects are defined by this interface:

● ASFile (described here)

● ASFileSys

● ASPathName

An ASFile is an opaque representation of an open file. It is similar to an ASStm,
although it is a lower-level abstraction. An ASFile knows its ASPathName and
ASFileSys. The Acrobat viewer creates one ASFile for each open file, and layers
one or more ASStm objects on each ASFile. Logically, an ASFile is analogous to a
file as used in the standard UNIX/POSIX low-level file I/O functions open, close,
read, write, and so forth (located in <fcntl.h>), and an ASStm is analogous to a
buffered file stream as used in standard C file I/O functions fopen, fread, fwrite,
and so forth (located in <stdio.h>). ASFile methods include:

ASFileSys

An ASFileSys is a collection of functions that implement file system services, such
as opening files, deleting files, reading data from a file, and writing data to a file. Each
ASFileSys provides these services for one class of devices. The Acrobat viewer has
a built-in ASFileSys that services the platform’s native file system. The Windows
Acrobat viewer includes an additional ASFileSys that services the OLE2
IStorage/IStream interfaces. Plug-ins may create additional ASFileSys objects to
service other file systems. For example, a plug-in could implement an ASFileSys to
access PDF files stored in a document database or to access PDF files across a
serial link.

An ASFileSys is a structure containing pointers to callback procedures used by the
ASFileSys, ASFile, and ASPathName methods. See “File Systems” on page 169
for more information on implementing an ASFileSys. The primary service of an
ASFileSys is to provide clients with a readable and/or writable file object (ASFile)

ASFileAcquirePathName Acquires a file’s path name

ASFileGetFileSys Gets the file system on which a file resides

ASAtomGetString Gets a string, given an ASAtom

ASFileRead Reads data from a file

Acrobat Core API Overview 61

Acrobat Support
ASFileSys

4

corresponding to a particular named location (ASPathName) on a particular type of
device. An ASPathName is specific to a given ASFileSys.

To allow Acrobat, another application, or a plug-in to open a file in your file system,
your file system must implement the pathFromDIPath method, which is used by
ASFileSysDIPathFromPath. This method converts a pathname specified in the
Acrobat’s device-independent pathname representation to a file system-specific
ASPathName. The device-independent representation is a string that is equivalent to
the URL path name, and is as defined in Section 7.4 in the PDF Reference, second
edition, version 1.3. Example device-independent paths are:

/volumename/segment/segment/filename

segment/filename

../../segment/filename

To allow Acrobat, another application, or a plug-in to create new “open file” actions for
your file system, your file system must implement the diPathFromPath method,
which is used by ASFileSysDIPathFromPath. This method converts a pathname
specified in your file system’s ASPathName representation to Acrobat’s
device-independent path name representation.

NOTE: In some circumstances, the device-independent path name may be insufficient
to uniquely identify a particular file in your file system. For example, on the
Macintosh platform, it is possible to mount two different drives with the same
name, and potentially have the same path name to two different files, each on
one of the drives. If files cannot be uniquely identified by path name, you may
also need to register a PDFileSpecHandler for your file system. See
“PDFileSpec” on page 93 for discussion of PDFileSpecHandlers.

To determine whether two ASFileSys instances are equal, your plug-in should
compare their ASFileSys pointers. It cannot, however, compare two ASPathNames
directly to determine whether or not they are equal; instead, it should convert them to
device-independent pathnames using ASFileSysDIPathFromPath, and compare
the resulting device-independent pathname strings. There are a few cases where
comparing device-independent pathnames may result in incorrectly believing two
path names specify the same file when they do not. For example, it is possible to have
two identical path names that specify files on different Macintosh disks.

The ASFileSys methods include:

ASFileSysCreatePathName Creates an ASPathName based on the input type
and file specification.

ASFileSysDIPathFromPath Converts a platform-independent pathname to a
platform-dependent pathname.

ASGetDefaultFileSys Gets a platform’s default file system.

Acrobat Support
ASPathName

4

62 Acrobat Core API Overview

ASPathName

An ASPathName is a file system-specific named location for a particular type of
device. It uses the ASFileSys structure pointers for callback. An ASPathName is
specific to a given ASFileSys.

ASStm

An ASStm is a data stream that may be a buffer in memory, a file, or an arbitrary user-
written procedure. You typically would use an ASStm to extract data from a PDF file.
When writing or extracting data streams, the ASStm must be connected to a Cos
stream (see “CosStream” on page 159).

ASStm methods include:

ASText

An ASText object holds encoded text. In Acrobat, encoded text can be specified in
one of two ways:

● As a null-terminated string of multi-byte text coupled with a host encoding. The
host encoding is platform-specific:
– On the Macintosh, host encoding is specified as a script code.

ASPathFromPlatformPath Converts a platform-specific pathname to an
ASPathName.

NOTE:Do not use this method on the Macintosh
platform. Instead, call
ASFileSysCreatePathName.

ASFileStmRdOpen Creates an ASStm from which data can be read
from a file.

ASMemStmRdOpen Creates an ASStm from which data can be read
from a memory buffer.

ASStmRead Reads data into memory from an ASStm.

ASStmWrite Writes data from memory to an ASStm. Can only
be used to write to print stream when printing to a
PostScript printer. It cannot be used for writing to
files.

Acrobat Core API Overview 63

Acrobat Support
ASText

4

– On Windows, host encoding is a CHARSET code.

● As an ASUns16 string of Unicode text terminated by an ASUns16 0 (two 0 bytes).
The string can be in either BigEndian or HostEndian format.

Each of the formats described in Table 4.1 can be mapped to one of the two cases
outlined above.

ASTexts also can be used to accomplish encoding conversions; your plug-in can
request a string in any of the formats specified above.

In all cases the ASText code attempts to preserve all characters. For example, if your
plug-in attempts to concatenate strings in separate host encoding, the
implementation may convert both to Unicode and perform the concatenation in
Unicode space.

When creating a new ASText object, or putting new data in an existing object,
Acrobat will always copy the supplied data into the ASText object. The original data
is yours to do with as you will (and release if necessary).

The size of ASText data always is specified in bytes, for example, the len argument
to ASTextFromSizedUnicode specifies the number of bytes in the string rather
than the number of Unicode characters.

Host encoding and Unicode strings are always terminated with a null character (which
consists of one null byte for host-encoded strings and two null bytes for Unicode

TABLE 4.1 Formats that can be mapped to encoded text

Format Description

Encoded A multi-byte string terminated with a single null character and coupled
with a specific host encoding indicator.

ScriptText A multi-byte string terminated with a single null character and coupled
with an ASScript code. (An ASScript is an enumeration of writing
scripts.) This is merely another way of specifying the Encoded case;
the ASScript code is converted to a host encoding using
ASScriptToHostEncoding.

Unicode A series of ASUns16 values containing Unicode values in big-endian
format, terminated with a single ASUns16 0. Unicode refers to straight
Unicode without the 0xFE 0xFF prefix or language and country codes
that can be encoded inside a PDF document.

PDText A string of text pulled out of a PDF document. This is either a
big-endian Unicode string pre-pended with the bytes 0xFE 0xFF or a
string in PDF document encoding. In the Unicode case, this also may
include language and country identifiers. ASText objects strip
language and country information out of the PDText string and track
them separately.

Acrobat Support
Configuration

4

64 Acrobat Core API Overview

strings). You cannot create a string with an embedded null character even using
methods that take an explicit length parameter.

The GetXXX methods return pointers to data held by the ASText object. Your plug-in
cannot free or manipulate this data directly. The GetXXXCopy methods return data
that your plug-in can manipulate at will and is responsible for freeing.

ASText methods include:

Configuration

The ASGetConfiguration method allows a plug-in to determine the Acrobat
viewer under which it is running. Because Acrobat Reader supports only a subset of
the core API, it is vital that plug-ins use this method at start-up to ensure that the
viewer currently running supports the API methods they need, including whether the
viewer can save changes to files (Acrobat can always save changes).

Errors

Acrobat supports a mechanism for registering and using error codes. These error
codes may be returned by methods, or (more commonly) used as exception codes

ASTextCmp Compares two ASText objects, ignoring
language and country information.

ASTextFromEncoded Creates a new text object from a null-terminated
multi-byte string in the specified host encoding.

ASTextFromSizedEncoded Creates a new text object from a multi-byte string
in the specified host encoding and of the specified
length.

ASTextFromSizedUnicode Creates a new ASText from the specified
Unicode string. This string is not expected to have
0xFE 0xFF prepended, or country/language
identifiers.

ASTextGetCountry Gets the country associated with a piece of text
stored in an ASText object.

ASTextGetPDTextCopy Gets the text in a form suitable for storage in a
PDF file.

ASTextNew Creates a new ASText containing no text.

ASTextSetLanguage Sets the language codes associated with an
ASText.

Acrobat Core API Overview 65

Acrobat Support
Fixed-point Math

4

when raising exceptions. See Chapter 12, “Handling Errors,” for a description of
exceptions and their handling.

Some of the representative error methods include:

Fixed-point Math

These macros and methods support operations on fixed-point numbers. Acrobat uses
32-bit fixed numbers, with the least significant 16 bits of a fixed-point number
representing the fractional part of the number. The operations supported include
conversions between integers and fixed-point numbers, conversions between C
strings and fixed-point numbers, math, rectangle utilities, and matrix operations.
ASFixed is not a standard C type.

The core API includes some macros and some AS layer methods for making
conversions.

Fixed-point Utility Macros

Some of the macros that convert between integer and fixed-point numbers, and that
specify common fixed-point numbers are described here.

ASGetExceptionErrorCode Gets the code of the most recently raised
exception. For convenience, your plug-in may use
the ERRORCODE macro described in “Exception
Handlers” on page 183.

ASRaise Raises an exception.

ASRegisterErrorString Registers a defined error and an associated
descriptive string.

ASFixedRoundToInt32 Converts a fixed point number to an ASInt32
rounding the result.

ASFixedToFloat Converts a fixed point number to a floating point
number.

ASFixedTruncToInt32 Converts a fixed point number to an ASInt32
truncating the result.

ASFloatToFixed Converts a floating point number to a fixed point
number.

ASInt32ToFixed Converts an ASInt32 to a fixed point number.

Acrobat Support
HFT Methods

4

66 Acrobat Core API Overview

Fixed-point Mathematics Methods

The fixed-point mathematics methods are described here:

Fixed-point Matrix Methods

The fixed-point matrix methods are described here.

In addition, the header file ASExpT.h contains a number of predefined constants for
specific fixed-point numbers.

HFT Methods

HFTs are the mechanism through which plug-ins call methods in the Acrobat viewer
or in other plug-ins. This capability enables plug-ins to override specific portions of
Acrobat’s functionality. For more information, see “Host Function Tables” on page 35.

The AS group contains several methods for dealing with HFTs, including:

ASFixedDiv Divides two fixed point numbers.

ASFixedMul Multiplies two fixed point numbers.

ASFixedMatrixConcat Multiplies two matrices.

ASFixedMatrixInvert Inverts a matrix.

ASFixedMatrixTransformRect Calculates the coordinates of a rectangle’s
corner points in another coordinate system.

ASExtensionMgrGetHFT Gets an HFT by name.

HFTNew Creates an HFT.

HFTReplaceEntry Replaces a replaceable method in an HFT.

HFTServerNew Creates an HFT server.

Acrobat Core API Overview 67

Acrobat Support
Memory Allocation

4

Memory Allocation

The core API provides methods for allocating and managing memory. These should
always be used instead of C functions such as malloc and free. Memory allocation
methods include:

Platform-specific Utilities

Macintosh

The core API includes Macintosh-specific methods for plug-ins. For details on all the
Macintosh methods available, see “Macintosh-specific Methods” in the Acrobat Core
API Reference. Methods include:

UNIX

The core API also includes UNIX-specific utility methods, which are only available for
plug-ins. These methods allow a plug-in to

● Find out about its environment

● Handle events

● Synchronize its operation with the window manager

● Read resources

● Write items into the preferences file

● Read the preferences file

UNIX methods include:

ASmalloc Allocates a block of memory.

ASfree Frees a block of memory.

ASrealloc Reallocates (changes the size of) a block of
memory.

AVAppHandleAppleEvent Handles an Apple event.

RectToAVRect Converts a Macintosh Rect to an AVRect.

UnixAppProcessEvent A wrapper function for XtAppProcessEvent.

UnixSysGetCwd Gets the current working directory.

Acrobat Support
Platform-specific Utilities

4

68 Acrobat Core API Overview

Windows

Windows-specific utility methods are only available for plug-ins. These methods allow
a plug-in to:

● Manipulate modal and modeless dialogs

● Get the color palette

● Control the AVAppIdle timer

Windows methods include:

WinAppGetModalParent Gets the appropriate parent for any
modal dialogs created by a plug-in.

WinAppRegisterInterface Registers a COM interface.

WinAppRegisterModelessDialog Registers modeless dialogs with the
viewer so that the dialog gets the
correct messages.

Acrobat Core API Overview 69

5 Acrobat Viewer Layer

The Acrobat Viewer (AV) layer of the core API (also known as AcroView) allows
plug-ins to control the Acrobat viewer application and modify its user interface. Using
the AV methods, a plug-in can add menus and menu items, add buttons to the toolbar,
open and close files, display simple dialog boxes, and perform many other
application-level tasks. Plug-ins must use AV layer methods to be accessible through
the Acrobat viewer’s user interface.

NOTE: AcroView methods are not available to the Adobe PDF Library.

The AV layer methods do not provide access to:

● Detailed internal structure of a PDF file (provided by the PD layer methods
described in Chapter 6, “Portable Document Layer”).

● Editing page contents (provided by the PDFEdit section of the core API, described
in Chapter 7, “PDFEdit—Creating and Editing Page Content”).

● Low-level disk structure of a file (provided by the Cos section of the core API,
described in Chapter 9, “Cos Layer”).

● File I/O system (provided by the AS methods, described in Chapter 4, “Acrobat
Support”).

The AV layer consists of the objects shown in Figure 5.1, “Acrobat Viewer Objects.”
The relationships in the figure are not strictly hierarchical, but are meant to indicate
how objects are associated. For example, the PDTextSelect object is included in
the figure because of its close association with the AV selection methods.

Acrobat Viewer Layer
General

5

70 Acrobat Core API Overview

FIGURE 5.1 Acrobat Viewer Objects

The following sections describe these objects and provide an overview of the
methods each supports. See the Acrobat Core API Reference for a detailed
description of each method.

General

General methods do not apply to a particular AV layer object. An example method is
AVDestInfoDestroy, which destroys a destination info object.

AVActionHandler

An AVActionHandler carries out an action. For instance, an action is what happens
when a link or bookmark is clicked in the Acrobat viewer. See Section 7.5 in the PDF
Reference for more information on actions.

When the Acrobat viewer executes an action, it looks for the action handler with a
type matching that of the action it is trying to execute. The Acrobat viewer invokes
the matching handler to perform the action. If no match is found, the Acrobat viewer
ignores the user action.

Your plug-in can add new action handlers by using
AVAppRegisterActionHandler, expanding the range of action types to which the
Acrobat viewer can respond. See “Action Handlers” on page 162 for further
information on creating action handlers.

AVCommand AVSweetPea AVDoc AVActionHandler AVAnnotHandler AVMenuBar AVToolbar AVTool

AVSys AVApp AVAlert

AVPageView Selection AVWindow AVCrypt

AVGrafSelect PDTextSelect

AVMenu AVMenuBar

AVMenuItem

Acrobat Core API Overview 71

Acrobat Viewer Layer
AVAlert

5

Your plug-in can use AVActionHandlerGetProcs to get a structure containing
pointers to an action handler’s methods. This method can be used to modify an
existing action handler.

AVAlert

AVAlert provides platform-independent support for displaying simple dialog boxes.
Methods include:

AVAnnotHandler

An AVAnnotHandler is responsible for creating, displaying, selecting, and deleting a
particular type of annotation. There is one annotation handler for each annotation
type. The Acrobat viewer contains two built-in annotation types (notes and links), and
plug-ins can add new annotation handlers by using
AVAppRegisterAnnotHandler. See “Annotation Handlers” on page 162 for details
on creating new annotation types.

AVAnnotHandler has no methods of its own, but is instead accessed through
AVApp methods.

AVApp

AVApp represents the Acrobat viewer. AVApp methods include:

AVAlert Displays a dialog box containing a string, icon,
and up to three buttons.

AVAlertNote Displays a dialog box containing a string and an
OK button.

AVAppGetActionHandlerByType Gets the action handler whose type
is specified.

AVAppGetActiveDoc Gets the frontmost document view.

AVAppGetCancelProc Gets the default procedure that is
called to determine whether the
user wants to cancel an operation.

AVAppGetDocProgressMonitor Gets the default thermometer
progress bar.

Acrobat Viewer Layer
AVCommand

5

72 Acrobat Core API Overview

AVCommand

An AVCommand represents an action that the user can perform on the current
document or the current selection in the current document. Specifically, an
AVCommand represents a command that can be added to a command sequence and
executed either interactively or by means of batch processing. Commands can be
executed with AVCommandExecute.

Invoking AVCommands Programmatically

To invoke AVCommands programmatically using the AVCommand methods, a plug-in
client must:

● Instantiate the command.

● Configure the command.

● Run the command.

AVAppGetMenubar Gets the viewer application’s menu
bar.

AVAppRegisterCommandHandler Registers an AVCommand handler to
implement an AVCommand with the
specified name. See “AVCommand”
on page 72 and “AVCommand
Handlers” on page 163 for details.

AVAppRegisterForPageViewClicks Registers a procedure to call each
time a mouse click occurs.

AVAppRegisterFromPDFHandler Registers an
AVConversionFromPDFHandler
to export from PDF to other file
formats.

AVAppRegisterGlobalCommand Registers an AVCommand in the
global command list.

AVAppRegisterToolBarPosition Sets the position of a toolbar. A
toolbar can have separate positional
attributes for internal and external
views.

AVAppRegisterToPDFHandler Registers an
AVAppRegisterGlobalCommand
to import other file formats.

Acrobat Core API Overview 73

Acrobat Viewer Layer
AVCommand

5

Instantiating the AVCommand

To instantiate an AVCommand, the client must call the AVCommandNew method,
providing the registered name of the command, for example

ASAtom cmdName;
AVCommand cmd;

cmdName = ASAtomFromString ("MinimalCommand");
cmd = AVCommandNew (cmdName);

For details on registering AVCommand handlers, see “AVCommand Handlers” on
page 163.

Configuring the Command

Prior to executing the AVCommand, the client can configure three categories of
properties:

● Input parameters (required)

● Configuration parameters (optional - initialized to defaults)

● AVCommand parameters (optional - initialized to defaults)

Input Parameters. At minimum, the client must configure the AVCommand’s input
parameters. The command must be provided with a PDDoc upon which to operate, as
shown in this example.

PDDoc pdDoc; // Initialized elsewhere
// Create cab to hold input parameters and populate
ASCab inputs = ASCabNew();
ASCabPutPointer (inputs, kAVCommandKeyPDDoc, PDDoc, pdDoc, NULL);
// Set the input parameters and destroy the container ASCab
if (kAVCommandReady != AVCommandSetInputs (cmd, inputs)) {

// Handle error
}
ASCabDestroy (inputs);

All other inputs are optional. See the description of AVCommandSetInputs in the
Acrobat Core API Reference, for details.

Configuration Parameters. Optionally the client can set configuration parameters. The
default UI policy is for commands to be fully interactive. To invoke the command
programmatically instead, the client can create an ASCab object and populate it with
the appropriate parameters, for example,

// Create cab to hold config parameters and populate
ASCab config = ACabNew();
ASCabPutInt (config, "UIPolicy", kAVCommandUISilent);

if (kAVCommandReady != AVCommandSetConfig (cmd, config)) {
// Handle error

ASCabDestroy (config);

Acrobat Viewer Layer
AVCommand

5

74 Acrobat Core API Overview

AVCommand Parameters. An AVCommand’s parameter set is specific to each
command. For example, the Document Summary command accepts values for five
parameters: Title, Subject, Author, Keywords, Binding, and LeaveAsIs. As in the above
example (see “Configuration Parameters” on page 73), a plug-in can create ASCabs
to hold the appropriate parameters; then it can create empty ASText objects to hold
the parameter values and put these values in the ASCabs. The following example
uses this approach to set Document Summary title and subject values:

const char *docTitleValue = "Document Title";
const char *docSubjectValue = "Document Subject";

// Create cab to hold command parameters and populate

ASCab params = ASCabNew();
ASText text = ASTextNew();
ASTextSetEncoded (text, docTitleValue,

(ASHostEncoding)PDGetHostEncoding());
ASCabPutText (params, docTitleKey, text);
text = ASTextNew();
ASTextSetEncoded (text, docSubjectValue,

(ASHostEncoding)PDGetHostEncoding());
ASCabPutText (params, docSubjectKey, text);
...
ASCabDestroy(params);

Running the AVCommand

The client can use either of two methods to drive the command:
AVCommandExecute or AVCommandWork. AVCommandExecute is a wrapper
method that repeatedly calls AVCommandWork until the command returns a status
code other than kAVCommandworking.

AVCommand Methods

AVCommand methods include:

AVCommandCancel Cancels the specified command.

AVCommandGetAVDoc Gets the AVDoc from a command s inputs ASCab.

AVCommandGetInputs Gets the input parameters of the specified command.

AVCommandGetParams Gets the parameter set for the specified command.

AVCommandNew Creates a new command of the specified type.

AVCommandSetParams Sets the parameters for the specified command.

AVCommandShowDialog Instructs the command to bring up its configuration
dialog and gather parameter information from the user.

Acrobat Core API Overview 75

Acrobat Viewer Layer
AVConversion

5

AVConversion

The AVConversion methods enable conversion from non-PDF file formats to PDF
and vice versa. For information on using the AVConversion methods to create a file
conversion handler, see “File Format Conversion Handlers” on page 166.

The AVConversion methods include:

AVCrypt

AVCrypt methods implement the Acrobat viewer’s built-in dialogs for encryption
control. They are present in the core API so that they can be used by other security
handlers. The AVCrypt methods include:

AVConversionConvertToPDFWithHandler Converts a PDF document to
another file format using the
specified handler.

AVConversionConvertToPDF Converts the specified file to a
PDF document using whatever
converter is found.

AVConversionConvertToPDFWithHandler Converts a file to a PDF
document using the specified
handler.

AVAuthOpen Determines if a user is authorized to open a
document.

AVCryptDoStdSecurity Displays a security dialog to the user, allowing the
user to change a document’s print, edit, and copy
permissions.

AVCryptGetPassword Displays the standard dialog box that lets a user
enter a password. The PDDocAuthorize or
PDDocPermRequest method (see “PDDoc” on
page 91) actually checks the password.

Acrobat Viewer Layer
AVDoc

5

76 Acrobat Core API Overview

AVDoc

An AVDoc is a view of a PDF document in a window. There is one AVDoc per
displayed document. Unlike a PDDoc (described in “PDDoc” on page 91), an AVDoc
has a window associated with it. The AVDoc methods include:

AVGrafSelect

An AVGrafSelect is a graphics selection on a page. It is a rectangular region of a
page that can be copied to the clipboard as a sampled image. After a plug-in creates
an AVGrafSelect, it can use AVDocSetSelection to set the AVGrafSelect as
the current selection and AVDocShowSelection to scroll it to a visible position in the
window.

AVGrafSelect methods include:

AVMenu

An AVMenu is a menu in the Acrobat viewer’s menubar. Plug-ins can create new
menus, add menu items at any location in any menu, and remove menu items.
Deleting an AVMenu removes it from the menubar (if it was attached) and deletes all
the menu items it contains.

There is a special AVMenu with the title Tools. This menu (the About Plug-ins menu
item and the Plug-in Help menu item) are always created when Acrobat is launched.

AVDocClose Closes a document.

AVDocDoSave Replacable method that allows plug-ins to
implement their own save functionality.

AVDocFromPDDoc Gets the AVDoc associated with a PDDoc.

AVDocPrintPages Prints pages from a document without displaying
a print dialog to the user.

AVDocSetViewMode Shows bookmarks, thumbnails, neither, or uses
full-screen mode.

AVGrafSelectCreate Creates a graphics selection.

AVGrafSelectDestroy Destroys a graphics selection.

AVGrafSelectGetBoundingRect Gets a graphics selection’s bounding
rectangle.

Acrobat Core API Overview 77

Acrobat Viewer Layer
AVMenubar

5

They are removed if and only if they are empty after every plug-in’s initialization
routines have been called.

Submenus (also called pullright menus) are AVMenu objects that are attached to an
AVMenuItem instead of to the menubar.

Each menu has a title and a language-independent name. The title is the string that
appears in the user interface, while the language-independent name is the same
regardless of the language used in the user interface. Language-independent names
allow a plug-in to locate the File menu without knowing, for example, that it is called
Fichier in French and Ablage in German.

It is strongly encouraged that you begin your language-independent menu names
with the plug-in name (separated by a colon) to avoid name collisions when more than
one plug-in is present. For example, if my plug-in is named myPlug, it might add a
menu whose name is myPlug:Options.

Your plug-in cannot directly remove a submenu. Instead, it must remove the
AVMenuItem to which the submenu is attached.

The AVMenu methods include:

AVMenubar

The AVMenubar is the viewer’s menubar and contains a list of all menus. There is
only one AVMenubar. Plug-ins can add new menus to, or remove any menu from, the
menubar. The menubar can be hidden from the user’s view. The AVMenuBar methods
include:

AVMenuAddMenuItem Adds a menu item at a specified location in a
menu.

AVMenuGetName Gets the language-independent menu name.

AVMenuNew Creates a new menu.

AVMenuRemove Removes a menu from the menu bar.

AVMenuRelease Releases a previously acquired menu.

AVMenubarAcquireMenuByName Acquires the menu with the specified
name.

AVMenubarAcquireMenuItemByName Acquires the menu item with the
specified name.

AVMenubarAddMenu Adds a menu to the menubar.

AVMenubarHide Hides the menubar.

Acrobat Viewer Layer
AVMenuItem

5

78 Acrobat Core API Overview

AVMenuItem

An AVMenuItem is a menu item in a menu. It has attributes, including

● A name

● A keyboard shortcut

● A procedure to execute when the menu item is selected

● A procedure to compute whether the menu item is enabled

● A procedure to compute whether the menu item is check marked, and whether it
has a submenu.

Menu items also may serve as separators between menu items. You are encouraged
to position your plug-in menu items relative to a separator. This helps ensure that if a
block of menu items is moved in a future version of Acrobat, your plug-in’s menu items
also are moved.

In Acrobat 4.0 and higher, plug-ins can be liberal in their use of separators. After
initialization, Acrobat 4.0 and higher clean up by removing separators at the
beginning or end of menus as well as removing duplicate separators.

A plug-in can simulate a user selecting a menu item by calling
AVMenuItemExecute. If the menu item is disabled, AVMenuItemExecute returns
without doing anything. AVMenuItemExecute works even when the menu item is not
displayed (for example, if it has not been added to a menu, its menu is not displayed,
or the menu bar is not visible). Plug-ins can set all attributes of menu items they
create, but must not set the Execute procedure of the Acrobat viewer’s built-in menu
items.

Your plug-in can specify menu item names using either the names seen by a user, or
language-independent names. The latter allows your plug-in to locate the Print…
menu item without knowing, for example, that it is called Imprimer… in French and
Drucken… in German.

You are strongly encouraged to begin your plug-in’s language-independent menu item
names with your plug-in’s name (separated by a colon) to avoid name collisions when
more than one plug-in is present. For example, if my plug-in is named myPlug, it
might add menu items whose names are myPlug:Open and myPlug:Find.

The AVMenuBar methods include:

AVMenuItemExecute Executes a menu item’s ExecuteProc.

AVMenuItemGetName Gets the language-independent name
of the menu item.

AVMenuItemNew Creates a new menu item.

AVMenuItemSetExecuteProc Sets the procedure called when the
menu item is selected by the user.

Acrobat Core API Overview 79

Acrobat Viewer Layer
AVPageView

5

AVPageView

An AVPageView is the area of the Acrobat viewer’s window that displays the contents
of a document page. Every AVDoc has an AVPageView and vice versa. It contains
references to the PDDoc and PDFont objects for the document being displayed.
Plug-ins can control the size of the AVPageView through AVWindowSetFrame and
AVDocSetSplitterPosition.

AVPageView has methods to display a page, select a zoom factor, scroll the page
displayed inside, highlight one or more words, control screen redrawing, and traverse
the history stack that records where users have been in a document.

In continuous page modes when more than one page may be displayed,
AVPageView may not completely specify the view of the AVDoc. In these cases, your
plug-in needs to call AVPageViewSetPageNum to set the page number that it wants.
For instance, if your plug-in is getting an annotation’s bounding rectangle with
AVPageViewGetAnnotRect, it should call AVPageViewSetPageNum first,
providing the annotation’s page number. This ensures that your plug-in gets the
AVRect on the page upon which the annotation appears.

Additional AVPageView methods include:

AVSweetPea

The AVSweetPea methods are used to implement the Adobe Dialog Manager (ADM),
a cross-platform API for creating and managing dialogs by Adobe applications. For
details on how to use ADM for Acrobat dialogs, see Using ADM in Acrobat. The
AVSweetPea methods include:

AVPageViewGetFirstVisiblePageNum Returns the page number of the first
page visible.

AVPageViewGetPage Gets the PDPage for a page view.

AVPageViewPointToDevice Transforms a points coordinates
from user space to device space.
See “Understanding Coordinate
Systems” on page 28.

AVPageViewZoomTo Sets the zoom factor.

AVSweetPeaGetBasicSuiteP Accesses the basic ADM suite.

AVSweetPeaGetPluginRef Gets a reference to the ADM plug-in itself (not
the plug-in you are currently developing).

AVSweetPeaIsADMAvailable Determines whether ADM is available.

Acrobat Viewer Layer
AVSys

5

80 Acrobat Core API Overview

AVSys

AVSys provides various system-wide utilities, including setting the cursor shape,
getting the current cursor, and beeping. Methods include:

AVTool

An AVTool is an object that can handle key presses and mouse clicks in the content
region of an AVPageView. Tools do not handle mouse clicks in other parts of the
viewer’s window, such as in the bookmark pane. At any time, there is one active tool,
which a plug-in can set using AVAppSetActiveTool.

Tools are often, but not always, set from toolbar buttons (see “AVToolButton” on
page 81). Some buttons, such as Zoom, set an active tool; in this case, setting the
active tool to one that drags out a rectangle, or adjusts the viewer’s zoom level in
response to user actions. Other buttons, such as the one that displays thumbnail
images, do not change the active tool.

Use AVAppRegisterTool to add a new tool to the Acrobat viewer.

Additional AVTool methods include:

AVToolBar

AVToolBar is the Acrobat viewer’s toolbar (the palette of buttons). In Acrobat 4.0 and
later, a plug-in can create flyouts that contain additional buttons and attach these
flyouts to existing buttons.

Plug-ins can add buttons to and remove buttons from a toolbar, show or hide toolbars,
and (Acrobat 5.0) create new toolbars. Because screen space is limited on many
monitors, plug-ins should add as few buttons as possible to toolbars.

AVSysAllocTimeStringFromTimeRec Gets a string representing the date
and time.

AVSysBeep Beeps.

AVSysGetStandardCursor Gets the specified cursor.

AVSysMouseIsStillDown Tests whether the mouse button is
still being pressed.

AVToolGetType Gets a tool’s type.

AVToolIsPersistent Indicates whether a tool is persistent or is one shot.

Acrobat Core API Overview 81

Acrobat Viewer Layer
AVToolButton

5

Buttons can be organized into groups of related buttons, with additional space
between the groups. It is possible to implement a group in which only one button can
be selected at a time. The logic of doing this is the plug-in’s responsibility; the plug-in
API does not provide any means to automatically relate one button’s state to another
button’s state.

A plug-in adds buttons to a toolbar by specifying the relative position of the button
(before or after) to an existing button.

Although there appear to be multiple toolbars in the Acrobat 4.0 and higher user
interface, there is still only one AVToolBar containing all the buttons that are not on
flyouts. A plug-in controls the toolbar upon which a button will appear by placing the
button next to an existing one already in the appropriate location. The AVToolBar
methods include:

AVToolButton

An AVToolButton is a button in the Acrobat viewer’s toolbar. Like menu items, the
procedure that executes when the button is clicked can be set by a plug-in. Although
not required, there generally is a menu item corresponding to each button, allowing
users to select a function using either the button or the menu item.

A plug-in can invoke a button as if a user clicked it. Buttons can be enabled
(selectable) or disabled (grayed out), and can be marked (selected). Each button also
has an icon that appears in the toolbar. AVToolButtons frequently, but not always,
change the active tool (see “AVTool” on page 80). For example, the button that selects
the link tool changes the active tool; whereas, the button that goes to the last page of
a document does not.

Normally, all tools are persistent and remain selected indefinitely. The Option key
(Macintosh platform) or Control key (Windows) can be used to select a tool for
one-shot use. Plug-ins should follow this convention to add buttons.

Separators between groups of buttons are themselves buttons, although they are
neither selectable nor executable. Because they are buttons, however, they do have
names, allowing other buttons to be positioned relative to them.

Plug-ins are encouraged to position their tool buttons relative to separators. Doing this
increases the likelihood that tool buttons will be correctly placed if future versions of
Acrobat move groups of toolbuttons around.

AVToolBarAddButton Adds a button to the toolbar.

AVToolBarGetButtonByName Gets the button that has the specified name.

AVToolBarNewFlyout Creates a new sub-toolbar for use as a tool button
flyout.

Acrobat Viewer Layer
AVWindow

5

82 Acrobat Core API Overview

Acrobat 4.0 and higher cleans up separators. It ensures that separators don't appear
back-to-back or at the beginning or end of the toolbar. Plug-ins can be liberal with
separators in Acrobat 4.0 and higher versions.

You are strongly encouraged to begin your language-independent button names with
the plug-in name (separated by a colon) to avoid name collisions when more than one
plug-in is present. For example, if my plug-in is named myPlug, it might add a button
whose name is myPlug:LastFile. For more information on plug-in naming, see
Chapter 2, “Registering and Using Plug-in Prefixes,” in the Acrobat Development
Overview.

The AVToolButton methods include:

AVWindow

AVWindow provides methods for creating and managing windows. Plug-ins should
use AVWindow methods for their own dialogs, floating palettes, and so forth, to
ensure that those windows work well with the viewer; for example, that under
Windows, they are hidden when the Acrobat viewer is iconified. Once the plug-in
creates an AVWindow, it is free to use platform-dependent code to put whatever it
wants in the window.

The Acrobat viewer uses the concept of a key window. The key window is the window
that receives keyboard events. Only one window is the key window at any time.
Windows can request to become the key window, or request that they no longer be
the key window.

On the Macintosh platform, there is an essential distinction between a key window
and an active window. A window is a key window if and only if it is the target of all
keystrokes and menu selections. A window is the active window if mouse clicks in it
are interpreted without requiring an initial activation click. This state is usually
indicated (in modal and non-floating windows) with some highlighting in the title bar.
Floating windows are inactive only if hidden.

NOTE: Plug-ins on the Macintosh platform should always use the core API methods to
zoom, resize, or move windows. They should never use the toolbox routines
(ZoomWindow, SizeWindow, GrowWindow, MoveWindow, and so forth)
directly on AVWindows.

AVToolButtonExecute Invokes a button’s execute procedure.

AVToolButtonGetName Gets the name of a button.

AVToolButtonNew Creates a new button.

AVToolButtonRemove Removes (but does not destroy) a button from the
toolbar.

AVToolButtonSetFlyout Attaches a sub-toolbar to a tool button.

Acrobat Core API Overview 83

Acrobat Viewer Layer
AVWindow

5

In addition, the Acrobat viewer reserves the WRefCon field in the
WindowRecord structure for internal purposes. To attach client data to an
AVWindow, a plug-in should use AVWindowGetOwnerData or
AVWindowSetOwnerData.

The AVWindow methods include:

AVWindowNew Creates a new window.

AVWindowNewFromPlatformThing Creates a new window from a platform-
native window pointer or handle.

AVWindowHide Hides a window.

AVWindowDrawNow Updates a window.

Acrobat Viewer Layer
AVWindow

5

84 Acrobat Core API Overview

Acrobat Core API Overview 85

6 Portable Document Layer

The Portable Document (PD) layer of the core API (also called PDModel) is a
collection of object methods enabling plug-ins to access and manipulate most data in
a PDF file. Figure 6.1 shows the objects in the PD layer.

FIGURE 6.1 PD Layer Objects

NOTE: Because of its close association to the AVDoc selection mechanism, the
PDTextSelect object is shown in Figure 5.1, “Acrobat Viewer Objects.”

Because many PD layer objects are based on PDF objects, it’s important to
understand PDF file structure. See the PDF Reference for details on PDF files.

PD layer methods perform the bookeeping that ensures any file written is a valid PDF
file. In addition, they take care of navigating much of the PDF file structure, such as
traversing the pages tree to get a specific page.

If you need lower-level access to the data in a PDF file, use Cos layer methods
(see Chapter 9, “Cos Layer”). To control the Acrobat viewer application itself, use AV
layer methods (see Chapter 5, “Acrobat Viewer Layer”). To modify page contents,

PDAction

PDFileSpec

PDAnnot

PDLinkAnnot PDTextAnnot PDText

PDViewDest PDPage PDThread PDWordFinder PDFont

PDBookmark PDDoc PDTextSelect

PDStyle

PDTrans

PDInlineImage

PDGraphic PDBead PDWord PDCharProc

PDImage PDForm

PDXObject PDPath

Portable Document Layer
General PD Layer Methods

6

86 Acrobat Core API Overview

such as text, use PDFEdit methods, described in Chapter 7, “PDFEdit—Creating and
Editing Page Content.”

The following sections describe each PD layer object and provide an overview of each
object’s methods. See the Acrobat Core API Reference for detailed descriptions of
the methods.

General PD Layer Methods

Some methods are general PD layer methods that are not associated with a specific
object. They include:

Metadata

Metadata is information that describes document content or use. The PDF file format
has always provided the Info dictionary, which contains metadata that applies to an
entire document, with nine standard properties defined (including creation and
modification date, title, and author).

New Metadata Features in PDF 1.4

PDF 1.4 introduces an enhanced way of representing metadata. It has the following
features:

● In addition to document-level metadata, there can be metadata describing
individual components of a PDF document, such as pages or images.

PDEnumDocs Enumerates the currently open PDDocs.

PDGetHostEncoding Indicates whether a system is Roman or CJK-
capable, i.e., capable of handling multibyte character
sets, such as Chinese, Japanese, or Korean..

PDGetPDFDocEncoding Gets a list describing the differences between host
encoding and a predefined encoding
PDFDocEncoding. See Appendix C of the PDF
Reference for a description of PDFDocEncoding.

PDXlateToHostEx Translates a string from PDFDocEncoding to host
encoding, allowing for multibyte characters.

PDXlateToPDFDocEncEx Translates a string from host encoding to
PDFDocEncoding or Unicode.

Acrobat Core API Overview 87

Portable Document Layer
Metadata

6

● Metadata properties and values are represented in the World Wide Web
Consortium’s Resource Definition Format (RDF), which is a standard metadata
format based on XML.

● The set of standard metadata items is organized into schemas, each of which
represents a set of properties from a particular applicaiton or industry standard.
The schemas, as well as the physical representation, are defined by an Adobe
standard (provisionally referred to as XAP).

See PDF: Changes From Version 1.3 to 1.4 for details about the use of metadata in
PDF 1.4.

Metadata APIs in Acrobat 5.0

Acrobat 5.0 provides a set of methods for accessing metadata. They are summarized
here (note that there are PDFEdit and Cos layer calls in addition to PD layer methds):

The Acrobat SDK contains several samples dealing with metadata. See the Guide to
SDK Samples for information.

PDDocGetXAPMetadata Gets the metadata of a document and
returns it as a newly allocated ASText
object.

PDDocSetXAPMetadata Sets the metadata of a document.

PDEContainerGetXAPMetadata Gets the metadata associated with a
document element

PDEContainerSetXAPMetadata Sets the metadata for a document
element

PDDocCalculateImplicitMetadata Broadcasts a notification to request
that plug-ins calculate and set implicit
metadata items. Implicit metadata is
metadata which depends on the state
of a document and must be calculated,
rather than being stored explicitly.

CosDictGetXAPMetadata Gets the metadata associated with a
dictionary or stream Cos object.

CosDictSetXAPMetadata Sets the metadata for a dictionary or
stream Cos object.

Portable Document Layer
PDAction

6

88 Acrobat Core API Overview

PDAction

Actions are tasks that the Acrobat viewer performs when a user clicks on a link or a
bookmark. Acrobat viewers allow a document to execute an action automatically
when a document is opened.

Action types include

● Going to another view within the same document

● Going to a specified view in another PDF file

● Launching an arbitrary file

● Playing a sound

● Resolving a URL

See Section 7.5 in the PDF Reference for more information on actions.

You can add custom action types to your plug-in by creating new action handlers (see
“Action Handlers” on page 162) that are responsible for interpreting an action’s data
and carrying out the action. PDAction methods include:

PDAnnot

This is the abstract superclass for all annotations (see Section 7.4, “Annotations,” in
the PDF Reference). Acrobat viewers have two built-in annotation classes:
PDTextAnnot and PDLinkAnnot. Plug-ins add movie, Widget (form field), and other
annotation types. You can define new annotation subtypes by creating new annotation
handlers (see “Annotation Handlers” on page 162). There are no objects of type
PDAnnot, but you-in can use PDAnnot methods on any subclass of PDAnnot.

The Acrobat SDK provides three useful macros to cast among PDAnnot and its text
annotation and link annotation subclasses (see PDExpT.h). These are:

● CastToPDAnnot

● CastToPDTextAnnot

● CastToPDLinkAnnot

The PDAnnot methods include:

PDActionGetDest Gets an action’s destination view.

PDActionGetSubtype Gets an action’s subtype.

PDActionNew Creates a new action.

PDAnnotGetRect Gets an annotation’s size and location.

Acrobat Core API Overview 89

Portable Document Layer
PDBead

6

PDBead

A bead is a single rectangle in an article thread. An article thread represents a
sequence of physically discontiguous but logically related items in a document (for
example, a news story that starts on one page of a newsletter and runs onto one or
more nonconsecutive pages). See Section 7.3.2, “Articles,” in the PDF Reference for
more information on article threads and beads.

A bead remains valid as long as a thread is “current and active.” When traversing the
beads in a thread using PDBeadAcquirePage or PDBeadGetPrev, you can use
PDBeadEqual to determine the wraparound point (end of the list).

Additional PDBead methods include:

PDBookmark

A bookmark corresponds to an outline object in a PDF document (see Section 7.2.2,
“Document Outline,” in the in the PDF Reference). A document outline allows the user
to navigate interactively from one part of the document to another. An outline consists
of a tree-structured hierarchy of bookmarks, which display the document’s structure to
the user. Each bookmark has:

● A title that appears on screen

● An action that specifies what happens when the user clicks on the bookmark

Bookmarks can either be created interactively by the user through the Acrobat
viewer’s user interface or can be generated programmatically. The typical action for a
user-created bookmark is to move to another location in the current document,
although any action (see “PDAction” on page 88) can be specified.

Each bookmark in the bookmark tree structure has zero or more children that appear
indented on screen, and zero or more siblings that appear at the same indentation
level. All bookmarks except the bookmark at the top level of the hierarchy have one
parent, the bookmark under which it is indented. A bookmark is said to be open if its
children are visible on screen, and closed if they are not.

A plug-in can get or set:

PDAnnotGetSubtype Gets an annotation’s subtype.

PDAnnotIsValid Tests whether an annotation is valid.

PDBeadGetRect Gets a bead’s bounding rectangle.

PDBeadGetThread Gets the thread containing the specified bead.

Portable Document Layer
PDCharProc

6

90 Acrobat Core API Overview

● The open attribute of a bookmark

● The text used for the bookmark’s title

● The action that is invoked when the bookmark is selected

PDBookmark methods include the following:

PDCharProc

A PDCharProc is a character procedure, a stream of graphic operators (see
“PDGraphic” on page 97) that draw a particular glyph of a Type 3 PostScript font.

A glyph is the visual representation of a character, part of a character, or even multiple
characters. For example, a glyph can be a picture of the letter A, or it can be an
accent mark, such as grave (`), or it can be a picture of multiple characters such as
the ligature fl, which represents the letters f and l. Glyphs can also be used to
represent arbitrary symbols, such as in the font ITC Zapf Dingbats®. Every glyph has
a name in a Type 1, multiple master Type 1, or Type 3 font. In most TrueType fonts,
glyphs are assigned names. In some TrueType fonts, the glyph names are implicit.

For information on Type 3 fonts, see Section 5.5.4 in the PDF Reference.

To determine the sequence of graphics operations used to draw one or more glyphs
in a Type 3 font, use PDFontEnumCharProcs to enumerate the glyphs in the font.
Then use PDCharProcEnum to enumerate the graphic operators in each glyph of
interest.

PDBookmarkAddNewChild Adds a new child to a bookmark.

PDBookmarkAddNewSibling Adds a new sibling to a bookmark.

PDBookmarkDestroy Destroys a bookmark and all of its children.

PDBookmarkFromCosObj Converts an appropriate Cos object to a
bookmark.

PDBookmarkGetAction Gets a bookmark s action.

PDBookmarkGetCosObj Gets the Cos object associated with a
bookmark

PDBookmarkGetParent Gets a bookmark’s parent bookmark.

PDBookmarkSetOpen Opens or closes a bookmark.

PDBookmarkSetTitle Sets a bookmark’s title.

Acrobat Core API Overview 91

Portable Document Layer
PDDoc

6

PDDoc

A PDDoc object represents a PDF document. There is a correspondence between a
PDDoc and an ASFile. Also, every AVDoc has an associated PDDoc, although a
PDDoc may not be associated with an AVDoc.

NOTE: An ASFile may have zero or more underlying files, so a PDF file does not
always correspond to a single disk file. For example, an ASFile may provide
access to PDF data in a database.

A plug-in may create a new document or open a document using an ASFileSys and
an ASPathName. These frequently provide access to disk files, but could also provide
access to PDF files by other methods, such as via a modem line. Because PD layer
objects do not have a concept of an “active document”, or even of a user, getting the
PDDoc of a document opened by the user requires calls to AV layer objects (see
Chapter 5, “Acrobat Viewer Layer”).

Each PDF document contains, among other things:

● A tree of pages (PDPage)

● (Optionally) trees of bookmarks and articles

● (Optionally) information and security dictionaries

These objects correspond to CosObj objects in the catalog of a CosDoc (see
Chapter 9, “Cos Layer”). However, they also have PD layer equivalents which are
accessible directly through PDDoc methods. Other objects in the catalog of a PDF file
may require Cos methods to access.

When you merge a PDF file containing form fields that have appearances, those
appearances and forms data are merged along with all the other page contents. If you
merge a file that has forms data into another file that has forms data, name conflicts
are resolved (in the same way the Acrobat Forms plug-in resolves these conflicts).

NOTE: For PDF files with forms data, when inserting pages from another file using
PDDocInsertPages, do not use the PDInsertAll flag. Using this flag wipes
out the previous forms data and replaces it with the information from the file
being inserted.

Querying PDDoc Permissions

Chapter 11, “Document Security,” describes Acrobat’s security features.

With Acrobat 5.0 and higher, plug-ins can query the permissions on a PDDoc to a
finer granularity than in previous Acrobat releases. Plug-ins can query specific PDDoc
objects and for specific operations authorized to be performed on those objects. At
the PDDoc level, for example, plug-ins can query whether printing the document is
fully allowed, allowed only at a low resolution, or not allowed under any
circumstances. A plug-in can request the applicable operations authorized for any the
following objects:

Portable Document Layer
PDDoc

6

92 Acrobat Core API Overview

● Document

● Page

● Link

● Bookmark

● Thumbnail

● Annotation

● Form

● Signature

To obtain the permissions, a plug-in can call the PDDocPermRequest method (which
replaces PDDocGetPermissions used with earlier Acrobat versions). The plug in
can request, for example, whether a particular operation can be performed on a
particular object (from the list above) for a specified PDDoc. The plug-in may, for
example, request whether permissions allow a rotating operation on a page object in
the PDDoc.

For a list of all the operations (PDPermReqOprs) that each object (PDPermReqObj)
supports (and a plug-in can request using PDDocPermRequest), see the
PDPermReqOpr and PDPermReqObj enumerations in the Acrobat Core API
Reference.

New callbacks have been added to the security handler structure PDCryptHandler
to support the finer granularity of permissions that plug-ins can query.

PDDoc Methods

PDDoc methods include:

PDDocAuthorize Adds permissions to the specified document, if
permitted.

PDDocClose Closes an open document.

PDDocCreate Creates a new document.

PDDocCreatePage Creates a new page.

PDDocCreateStructTreeRoot Creates a new StructTreeRoot element.

PDDocCreateWordFinderUCS Creates a word finder (see “PDWordFinder” on
page 106) for extracting text in UCS format
from a PDF file.

PDDocGetInfo Gets a value from a document’s Info
dictionary.

PDDocInsertPages Inserts pages from another document.

Acrobat Core API Overview 93

Portable Document Layer
PDFileSpec

6

PDFileSpec

A PDFileSpec corresponds to the PDF file specification object (see Section 3.10,
“File Specifications,” in the PDF Reference). It is used to specify a file in an action
(see “PDAction” on page 88). A file specification in a PDF file can take two forms:

● A single platform-independent pathname

● A data structure containing one or more alternative ways to locate the file on
different platforms

PDFileSpecs can be created from ASPathNames or from Cos objects. Methods are
also provided to get ASPathNames and device-independent pathnames from
PDFileSpecs. The PDFileSpec methods include:

PDDocGetNumPages Gets the number of pages in the document.

PDDocGetWordFinder Gets the word finder associated with a
document.

PDDocOpen Opens a PDDoc from an ASFileSys and an
ASPathName.

PDDocPermRequest (Acrobat 5.0 and higher) Causes Acrobat to
call the document’s security handler via
PDCryptAuthorizeExProc requesting
whether the operation is allowed on the object.
Replaces the PDDocAuthorize and
PDDocGetPermission methods.

PDDocSave Saves a document.

PDDocSetInfo Sets a value in a document’s Info dictionary.

PDFileSpecAcquireASPath Acquires an ASPathName for the specified file
specification and relative path.

PDFileSpecGetDIPath Gets the device-independent pathname from a file
specification.

PDFileSpecGetDoc Gets the PDDoc that contains the file
specification.

PDFileSpecGetFileSysName Gets the name of the file system to which the
PDFileSpec belongs.

Portable Document Layer
PDFont

6

94 Acrobat Core API Overview

PDFont

A PDFont is a font that is used to draw text on a page. It corresponds to a font
resource in a PDF file (see Section 5, “Fonts,” in the PDF Reference).

Plug-ins can get a list of PDFonts used on a PDPage or a range of PDPages. More
than one PDPage may reference the same PDFont object.

A PDFont has a number of attributes whose values can be read or set, including an
array of widths, the character encoding, and the font’s resource name.

In general, a PDFont refers to a base font and an encoding. The base font is specified
by the font name and the subtype (typically Type 0, Type 1, MMType1, Type 3, or
TrueType). This combination of base font and encoding is commonly referred to as a
font instance.

In single-byte character systems, an encoding specifies a mapping from an 8-bit
index, often called a codepoint, to a glyph.

Type 0 fonts support single-byte or multibyte encodings and can refer to one or more
descendant fonts. These fonts are analogous to the Type 0 or composite fonts
supported by Level 2 PostScript interpreters. However, PDF Type 0 fonts only support
character encodings defined by a character map (CMap). The CMap defines the
encoding for a Type 0 font. It specifies the mappings between character codes and the
glyphs in the descendant fonts. For more information on Type 0 fonts, see Section
5.6.5, “Type 0 Font Dictionaries,” in the PDF Reference. See Section 5.6.4, “CMaps,”
for information on CMaps.

Type 0 fonts may have a CIDFont as a descendant. A CIDFont is designed to contain
a large number of glyph procedures and is used for languages such as Chinese,
Japanese, or Korean. Instead of being accessed by a name, each glyph procedure is
accessed by an integer known as a character identifier or CID. Instead of a font
encoding, CIDFonts use a CMap to define the mapping from character codes to a font
number and a character selector. For more information on CIDFonts, see the following
sections in the PDF Reference:

● Section 5.6.1, “CID-Keyed Fonts Overview”

● Section 5.6.2, “CIDSystemInfo Dictionaries”

● Section 5.6.3, “CIDFonts”

To access documents on CIDFonts, see the Adobe Solutions Network Web site.

For general information on CID Fonts, refer to these technical notes:

Technical
Note # Title

5092 CID-Keyed Font Technology Overview

5014 Adobe CMap and CIDFont Files Specification

http://partners.adobe.com/asn

Acrobat Core API Overview 95

Portable Document Layer
PDFont

6

For information on specific CID fonts, see these technical notes:

Each base font contains a fixed set of glyphs. There are some common sets of glyph
names, and these sets are typically called charsets. Acrobat viewers take advantage
of the most common charset to enable font substitution. This charset is called the
Adobe Standard Roman Character Set (see Appendix E in the PostScript Language
Reference, third edition). If the Acrobat viewer encounters a font with this charset, it
knows that it can represent all of the glyphs in the font using font substitution. Other
common charsets are the Adobe Expert and Expert Subset charsets, and the Symbol
charset. Most decorative fonts, such as Carta™ and Wingdings, have custom charsets.

Given a base font and its charset, multiple encodings are possible. For example, one
encoding for a font could specify that the glyph for the letter ‘A’ appears at codepoint
65. A different encoding could specify that ‘A’ appears at both codepoint 65 and at
codepoint 97. If text were rendered using the second encoding using the text string “a
is always A”, it would appear as “A is always A” using a font such as Times™.
Encodings allow glyphs to be reordered to the most convenient order for an
application or operating system.

Every font has a default encoding, commonly called its built-in encoding. In PDF,
shortcuts are taken when specifying an encoding in order to minimize document size.
If a font instance uses the built-in encoding, no encoding information is written into the
PDF document. If a font has a different encoding, only those codepoints for which the
encoding differs from the built-in encoding are recorded in the PDF file. This
information is called a difference encoding; it describes the difference between the
built-in encoding and the current encoding.

For non-Roman systems, the font encoding may be a variety of encodings, which are
defined by a CMap. See Section 5.6.4, “CMaps,” in the PDF Reference for a list of
predefined CMaps, such as SHIFT-JIS for Japanese.

Technical
Note # Title

5078 Adobe-Japan1-2 Character Collection for CID-Keyed
Fonts

5079 Adobe-GB1-0 Character Collection for CID-Keyed Fonts

5080 Adobe-CNS1-0 Character Collection for CID-Keyed Fonts

5093 Adobe-Korea1-0 Character Collection for CID-Keyed Fonts

5094 Adobe CJK Character Collections and CMaps for
CID-Keyed Fonts

5097 Adobe-Japan2-0 Character Collection for CID-Keyed
Fonts

5174 CID-Keyed Font Installation for PostScript File Systems

Portable Document Layer
PDForm

6

96 Acrobat Core API Overview

A host encoding is a platform-dependent encoding for the host machine’s base font.
For non-UNIX Roman systems, it is MacRomanEncoding on the Macintosh platform
and WinAnsiEncoding on Windows. For UNIX (except HP-UX) Roman systems, it is
ISO8859-1 (ISO Latin-1); For HP-UX, it is HP-ROMAN8. See Appendix D, “Character
Sets and Encoding,” in the PDF Reference for descriptions of MacRomanEncoding
and WinAnsiEncoding. These encodings specify a mapping from codepoint to glyph
name for fonts that use the Adobe Standard Roman Character Set on the Macintosh
and Windows platforms.

Across PDF documents—or even within a single PDF document—the same base font
can be used with more than one encoding. This allows documents from different
platforms to be combined without losing information. Therefore, it is not uncommon to
see a document that contains two instances of Helvetica™, one using MacRoman
encoding and another using WinAnsi encoding. See Appendix D, “Character Sets
and Encodings,” in the PDF Reference for descriptions of MacRomanEncoding and
WinAnsiEncoding. For non-Roman systems, the host encoding may be a variety of
encodings, which are defined by a CMap.

Type 3 fonts do not have the ability to provide a base font with more than one
encoding. For each Type 3 font, there is only one encoding. This encoding is
completely specified in the PDF file; there are no shortcuts as there are for other
fonts.

See Section 5.7, “Font Descriptors,” in the PDF Reference for a discussion of font
descriptors. Methods are provided to create and destroy fonts, as well as to access
the information in the font’s descriptor.

The PDFont methods include the following:

PDForm

A PDForm is a self-contained set of graphics operators that is used when a particular
graphic is drawn more than once in a document. It corresponds to a form resource
(see Section 4.9, “Forn XObjects,” in the PDF Reference). PDForm objects inherit
from the PDXObject class; you can use any PDXObject methods on a PDForm..

NOTE: A PDForm does not correspond to Acrobat’s interactive forms. See the Acrobat
SDK document, Acrobat Forms API Reference, for information on the Acrobat
Forms plug-in API methods.

PDFontGetName Gets the PostScript name for a Type 1 or Type 3 font, and
the “styled” name for a TrueType font.

PDFontGetSubtype Gets the font’s subtype.

PDFontGetWidths Gets a font’s character widths.

Acrobat Core API Overview 97

Portable Document Layer
PDGraphic

6

The PDForm methods include the following:

PDGraphic

PDGraphic is the abstract superclass for all graphic objects that comprise page,
charproc, and PDForm descriptions (see Chapter 4, “Graphics,” in the PDF
Reference). There are no objects of type PDGraphic, but its methods can be used by
any graphic object. There are three types of graphic objects: PDPath, PDText, and
PDInlineImage. In addition to these three objects, there are also operators in the
content stream. These operators are: Save, Restore, references to XObjects
(forms and image resources), and for Type 3 font descriptions only, charwidth and
cachedevice. Access to these objects and operators is via
PDPageEnumContents, PDFormEnumPaintProc, or PDCharProcEnum.

The PDGraphic methods include the following:

Many of the methods provide access to parameters of the graphics state. For a
discussion of the graphics state and its parameters, see Section 4.3, “Graphics State,”
in the PDF Reference.

PDImage

A PDImage is a sampled image or image mask, and corresponds to a PDF Image
resource (see “Stencil Masking” in Section 4.8, “Images,” in the PDF Reference).You
can use any PDXObject method on a PDImage. The PDImage methods include the
following:

PDFormEnumPaintProc Enumerates a form’s drawing operations.

PDFormGetBBox Gets a form’s bounding box.

PDFormGetMatrix Gets a form’s transformation matrix.

PDGraphicGetBBox Gets a graphic’s bounding box.

PDGraphicGetCurrentMatrix Gets the current transformation matrix in effect
for a graphic object.

PDGraphicGetState Gets the graphics state associated with a
graphic object.

PDImageGetAttrs Gets the attributes of an image.

PDImageSelectAlternate Selects an alternate image to use.

Portable Document Layer
PDInlineImage

6

98 Acrobat Core API Overview

PDInlineImage

A PDInlineImage is an image whose data is stored in the page description’s
contents stream instead of being stored as an image resource (see PDImage).
PDInlineImage is a subclass of PDGraphic and corresponds to the PDF inline
image operator (see Section 4.8.6, “In-Line Images,” in the PDF Reference).

Inline images generally are used for images with small amounts of data (up to several
kilobytes), while image resources are used for large images. The reason for this is
that there is a tradeoff between the time needed to access an image resource and the
time saved by not having to parse inline image data when display large images is
disabled in the Acrobat viewer. For small images, the time needed to access an image
resource is large compared to the time needed to parse the image data; the opposite
is true for large images.

The PDInlineImage methods include the following:

PDLinkAnnot

A PDLinkAnnot corresponds to a link annotation (see Sections 7.4.5, “Annotation
Types,” in the PDF Reference). You can use any PDAnnot method on a
PDLinkAnnot.

Plug-ins can get and set:

● The bounding rectangle and color, using PDAnnot methods

● The action that occurs when the link is activated, using PDLinkAnnot methods

● The link’s border, using PDLinkAnnot methods

Plug-ins can create new link annotations and delete existing ones, using the PDPage
methods.

The following are useful macros for casting among PDAnnot and its text annotation
and link annotation subclasses:

● CastToPDAnnot

● CastToPDTextAnnot

● CastToPDLinkAnnot

The PDLinkAnnot methods include:

PDInlineImageGetAttrs Gets an inline image’s attributes.

PDInlineImageGetData Gets the image data for an inline image.

PDLinkAnnotGetAction Gets a link annotation’s action.

Acrobat Core API Overview 99

Portable Document Layer
PDNameTree

6

PDNameTree

A PDNameTree is used to map Cos strings to Cos objects, just as a Cos dictionary is
used to map Cos names to Cos objects. However, a name tree can have many more
entries than a Cos dictionary. You can create a PDNameTree and locate it where
appropriate (perhaps under a page, but most often right under the catalog). A
PDNameTree is used to store the named destination information.

Name trees use Cos-style strings, which may use Unicode encoding, rather than null-
terminated C strings. Unicode encoding may contain bytes with zeroes in them (the
high bytes of ASCII characters).

The PDNameTree methods include:

PDNumTree

A PDNumTree is used to map integers to arbitrary Cos objects just as a Cos
dictionary is used to map Cos names to Cos objects. However, a number tree can
have many more entries than a Cos dictionary. The PDNumTree methods include the
following:

PDPage

A PDPage is a page in a document, corresponding to the PDF Page object (see “Page
Objects” in Section 3.6.2, “Page Tree,” in the PDF Reference). Among other
associated objects, a page contains:

● A series of objects representing the objects drawn on the page (PDGraphic)

● A list of resources used in drawing the page

● Annotations (which are subclasses of PDAnnot)

PDLinkAnnotSetBorder Sets a link annotation’s border.

PDNameTreeGet Retrieves an object from the name tree.

PDNameTreeNew Creates a new name tree in the document.

PDNumTreeFromCosObj Creates a type cast of a CosObj to a number tree.

PDNumTreePut Puts a new entry in the number tree. If an entry with
this number is already in the tree, it is replaced.

Portable Document Layer
PDPageLabel

6

100 Acrobat Core API Overview

● An optional thumbnail image of the page

● Beads used in any articles that occur on the page

PDPage methods include:

PDPageLabel

A PDPageLabel represents a page label. These labels allow non-sequential page
numbering or the addition of arbitrary labels for a page (such as the inclusion of
Roman numerals at the beginning of a book). A PDPageLabel specifies:

● The numbering style to use (for example, uppercase or lowercase Roman,
decimal, and so forth)

● The starting number for the first page

● An arbitrary prefix to be added to each number (for example, “A-” to generate
”A-1”, “A-2”, “A-3”, and so forth)

PDPageLabel methods include:

PDPageAddAnnot Adds an annotation to a page.

PDPageDrawContentsToWindow Draws the contents of a page into a user-
supplied window.

PDPageGetAnnot Gets an annotation from a page.

PDPageGetBBox Gets the bounding box for a page.

PDPageGetDoc Gets the document containing a page.

PDPageGetNumber Gets a page’s number

PDPageGetNumAnnots Gets the number of annotations on a page.

PDPageHasTransparency Checks whether a page has any transparency
features.

PDPageLabelEqual Compares two page labels to see if they are
equivalent.

PDPageLabelGetStart Gets the starting page number for the page label
specified.

Acrobat Core API Overview 101

Portable Document Layer
PDPath

6

PDPath

A PDPath is a graphic object (a subclass of PDGraphic) representing a path in a
page description. Paths are arbitrary shapes made of straight lines, rectangles, and
cubic curves. Path objects may be filled or stroked, and they can serve as a clipping
path.For details, see the following sections in the PDF Reference:

● Section 4.1, “Graphic Objects”

● Section 4.4, “Path Construction and Painting”

PDPath methods include:

PDStyle

A PDStyle object provides access to information on the fonts, font sizes, and colors
used in a PDWord. PDStyle methods include:

PDText

A PDText is a graphic object (a subclass of PDGraphic) representing one or more
character strings on a page. For details, see the following sections in the PDF
Reference:

● Section 4.1, “Graphics Objects”

● Section 5.3, “Text Objects”

Like paths, text can be stroked or filled, and can serve as a clipping path.

There are PDText methods to access the text-specific parameters in the graphics
state. See Section 4.3, “Graphics State,” in the PDF Reference for a discussion of
graphics state. PDText methods include:

PDPathEnum Enumerates a path’s operators, calling one of several
user-supplied callbacks for each.

PDPathGetPaintOp Determines which paint/close/clip operators are used for
the path.

PDStyleGetColor Gets a style’s color.

PDStyleGetFontSize Gets a style’s font size.

PDTextEnum Enumerates the strings of a text object.

Portable Document Layer
PDTextAnnot

6

102 Acrobat Core API Overview

PDTextAnnot

A PDTextAnnot corresponds to a PDF text annotation. For details, see ”Text
Annotations” in Section 7.4.5, “Annotation Types,” in the PDF Reference. You can use
any PDAnnot method on a PDTextAnnot.

Plug-ins can use PDTextAnnot methods to:

● Get and set attributes including the rectangle, textual contents, and whether or not
the annotation is open.

● Create new text annotations and delete or move existing ones using PDAnnot
methods.

● Manipulate the behavior of text annotations by modifying the Text Annotation
Handler.

The Acrobat SDK provides three useful macros to cast among PDAnnot and its text
annotation and link annotation subclasses. These are (see PDExpT.h):

● CastToPDAnnot

● CastToPDTextAnnot

● CastToPDLinkAnnot

PDTextAnnot methods include:

PDTextSelect

PDTextSelect objects represent a selection of text on a single page, and may
contain more than one disjointed group of words. A text selection contains one or
more ranges of text, with each range containing the word numbers (in PDF order, as
returned by PDWordFinderEnumWords or PDWordFinderAcquireWordList) of
the selected words. Each range has a start word (the first word in the series) and an
end word (the first word not in the series).

PDTextSelect methods are useful for:

● Processing a text selection created by a user via an Acrobat viewer’s user interface

● Programmatically creating a region of text.

PDTextGetState Gets the text state for a text object.

PDTextAnnotGetContents Gets the text of a text annotation.

PDTextAnnotSetOpen Opens or closes a text annotation.

Acrobat Core API Overview 103

Portable Document Layer
PDTextSelect

6

You can manipulate text selections using the PDTextSelectRangeRec data
structure. This structure contains two start/end pairs

● The first pair indicates the word offsets of the start and end words of the selection.

● The second pair indicates the character offsets within the start and end words of
the beginning and end of the selection.

NOTE: Plug-ins should set both character offset fields to zero. because the current
Acrobat viewer highlights only whole words, not substrings within words.

To create a selection, plug-ins can:

● Supply a list of PDTextSelectRangeRec structures to
PDTextSelectCreateRanges

● Supply a list of word highlights to PDTextSelectCreateWordHilite

While character offsets are well-defined quantities in a PDF file, word numbers are
calculated by the PDWordFinder algorithm and, therefore, may change as the word
finder algorithm is improved in future versions. Because of this, long-term storage of
selection information (in custom annotations, for example) is safer if done with
page-relative character offsets and PDTextSelectCreatePageHilite.

Once a plug-in creates a text selection, it can make it the current selection using
AVDocSetSelection.

PDTextAnnot methods include the following:

NOTE: The first three methods above have new versions, with “Ex” appended, which
let you specify the version of the word finder algorithm to use (see
“PDWordFinder” on page 106).

PDTextSelectCreatePageHilite Creates a text selection containing one or
more words specified by their character
offsets from the start of the page.

PDTextSelectCreateRanges Creates a text selection from a list of
start/stop word offset pairs.

PDTextSelectCreateWordHilite Creates a text selection containing one or
more words specified by their word offsets
from the start of the page.

PDTextSelectEnumText Enumerates the strings of the specified text
select object, calling a procedure for each
string.

Portable Document Layer
PDThread

6

104 Acrobat Core API Overview

PDThread

A thread corresponds to an article in the Acrobat viewer’s user interface, and contains
an ordered sequence of rectangles that bound the article. Each rectangle is called a
bead. See Section 7.3.2, “Articles,” in the PDF Reference for more information on
articles and beads in PDF.

Threads can be created interactively by the user or programmatically. They are
internally represented by a circular linked list of PDBeads.

PDThread methods include the following:

PDThumb

A PDThumb is a thumbnail preview image of a page.

PDTrans

A PDTrans represents a transition to a page. The Trans key in a page dictionary
specifies a transition dictionary, which describes the effect to use when going to a
page and the amount of time the transition should take. See Section 7.3.3,
“Presentations,” in the PDF Reference for more information on transitions. PDTrans
methods include the following:

PDViewDestination

A PDViewDestination represents a particular view of a page in a document. It
contains a reference to a page, a rectangle on that page, and information specifying
how to adjust the view to fit the window’s size and shape. It corresponds to a PDF
Dest array (see “Named Destinations” in Section 7.2, “Document-Level Navigation,” in
the PDF Reference) and can be considered a special form of a PDAction.

PDThreadNew Creates a thread.

PDThreadGetFirstBead Gets an article thread’s first bead.

PDThreadIsValid Tests whether a thread is valid.

PDTransGetDuration Gets the duration of a transition.

PDTransNew Creates a new transition

Acrobat Core API Overview 105

Portable Document Layer
PDWord

6

PDViewDestination provides a number of methods to get or set the attributes
describing the location and size of the view, including the page, rectangle, and fit
style.

PDViewDestination methods include:

PDWord

A PDWord object represents a word in a PDF file. Each word contains a sequence of
characters in one or more styles (see “PDStyle” on page 101).

All characters in a word are not necessarily physically adjacent. For example, words
can be hyphenated across line breaks on a page.

Each character in a word has a character type. Character types include: control code,
lowercase letter, uppercase letter, digit, punctuation mark, hyphen, soft hyphen,
ligature, white space, comma, period, unmapped glyph, end-of-phrase glyph,
wildcard, word break, and glyphs that can’t be represented in the destination font
encoding. See Character Type Codes in the Core API Reference for details.

The PDWordGetCharacterTypes method can get the character type for each
character in a word. The PDWordGetAttr method returns a mask containing
information on the types of characters in a word. The mask is the logical OR of several
flags, including the following:

● One or more characters in the word cannot be represented in the output encoding.

● One or more characters in the word are punctuation marks.

● The first character in the word is a punctuation mark (this bit is on in addition to the
punctuation bit).

● The last character in the word is a punctuation mark (this bit is on in addition to the
punctuation bit).

● The word contains a ligature (a special typographic symbol consisting of two or
more characters such as the English fi ligature used to replace the two-character
sequence, f followed by i). Ligatures are used to improve the appearance of a
word.

● One or more characters in the word are digits.

● There is a hyphen in the word.

● There is a soft hyphen in the word.

A word’s location is specified by the offset of its first character from the beginning of
the page (known as the character offset). The characters are enumerated in the order

PDViewDestCreate Creates a new view destination object.

PDViewDestGetAttr Gets a view destination’s fit type, destination rectangle,
and zoom factor.

Portable Document Layer
PDWordFinder

6

106 Acrobat Core API Overview

in which they appear in page’s content stream in the PDF file (which is not necessarily
the order in which the characters are read when displayed or printed).

A word also has a character delta, which is the difference between the number of
“characters” representing the word in the PDF file and the number of characters in the
word. The character delta is non-zero, for example, when a word contains a ligature.

PDWord methods include the following:

PDWordFinder

A PDWordFinder extracts words from a PDF file, and enumerates the words on a
single page or on all pages in a document. The core API provides methods to extract
words from a document, obtain information on the word finder, and to release a list of
words after a plug-in is done using it.

To create a word finder, use PDDocCreateWordFinder or
PDDocCreateWordFinderUCS.

There are two primary methods of using word finders:

● Calling the method PDWordFinderEnumWords, which calls a user-provided
procedure each time a word is recognized on a page.

● Using PDWordFinderAcquireWordList, which builds a word list for an entire
page before it returns. This method can return the recognized words in two
possible orders:
– The order in which the words are encountered in the PDF file.
– According to word location on the page. For a page containing a single column

of text, this generally is the same as reading order. For a page containing multiple
columns of text, this is not true.

The PDWordFinder methods include:

PDWordGetAttr Gets a bit field containing information on the
types of characters in a word.

PDWordGetCharacterTypes Gets the character type for each character in a
word.

PDWordGetCharOffset Returns the offset of a word from the beginning of
the page.

PDWordGetString Converts a word to a null-terminated string and
converts ligatures to their constituent characters.

PDWordFinderAcquireWordList Finds all words on a page, and returns one
or more tables containing the words.

Acrobat Core API Overview 107

Portable Document Layer
PDXObject

6

PDXObject

This object corresponds to a PDF XObject (see Section 4.9.4, “Form XObjects,” in the
PDF Reference). PDXObject objects currently used by Acrobat viewers are of one of
the two X Object subclasses: PDImage and PDForm. You can use any PDXObject
method on these objects

The PDXObject methods include:

PDWordFinderGetNthWord Gets the nth word in the word list obtained
using PDWordFinderAcquireWordList.

PDXObjectGetData Passes the data from an XObject to a user-
supplied procedure.

PDXObjectGetSubtype Gets the subtype of an XObject (PDImage or
PDForm.)

Portable Document Layer
PDXObject

6

108 Acrobat Core API Overview

Acrobat Core API Overview 109

7

APTER
PDFEdit—Creating and Editing
Page Content

Introduction

The PDFEdit API provides easy access to PDF page contents. With PDFEdit, your
plug-in can treat a page’s contents as a list of objects rather than manipulating the
content stream’s marking operators.

Page content is a major component of a PDF file. It represents the visible marks on a
page that are drawn by a set of PDF marking operators. The set of marking operators
for a page also is referred to as a display list, since it is a list of marking operations
that represent the displayed portion of a page. See Section 3.7.1, “Content Streams,”
in the PDF Reference for an overview of page content streams and references to
other chapters that describe the marking operators in detail.

PDFEdit provides easy access to PDF page contents. PDFEdit is meant to be used in
conjunction with the Acrobat PD layer and Cos layer methods for manipulating PDF
documents. To use PDFEdit effectively, you should be familiar with PDF page marking
operators and the PD layer of the core API, described in Chapter 6.

PDFEdit works with the page contents associated with the Contents key in the page
dictionary. See Table 3.17 in the PDF Reference, for the entries in a page dictionary. It
can also handle Form XObject appearances represented by the AP (appearances)
key in an annotation dictionary. See Table 7.9 in the PDF Reference, for the entries in
an annotation dictionary.

Overview of PDFEdit

Why PDFEdit?

Acrobat Distiller and PDFWriter create documents from PostScript or as output from a
printer driver. Non-PDFEdit methods in the core API allow displaying and printing
documents, and provide the ability to rearrange pages and to add annotations.
However, most of these manipulations are creation-centered, or only deal with objects
at the page level and above. PDFEdit methods, on the other hand, allow your plug-in
to deal with objects at the level of a page’s contents.

The content of a page either resides in a stream object or an array of stream objects.
Inside the stream, the elements of a page are not described as objects; they are
described as marking operators. There are graphic and clip states at any point in the
page description. This state is modified by other operators (such as SC, w, and so on).

PDFEdit—Creating and Editing Page Content
Overview of PDFEdit

7

110 Acrobat Core API Overview

These streams are difficult to manipulate using non-PDFEdit core API methods for
these reasons:

● It is awkward to parse or enumerate a stream. Existing methods such as
PDPageStmGetToken get data from the contents stream, but the tokens returned
are uninterpreted page marking operators.The method does not readily allow your
plug-in to modify the content.

● Resource handling is difficult. Non-PDFEdit methods in the core API treat resource
and contents as unrelated entities. Text is not readily associated with its font
resource, for instance.

● Attribute handling requires reverse scanning. Given some piece of a page’s
contents, it is difficult to determine its attributes. For instance, to determine the font
used in a text string, a plug-in must find the immediately preceding Tf (text state,
font size) operator in the stream.

● The stream must be decoded. The page contents stream is typically encoded to
compress it, so it cannot be readily accessed by external programs.

What is PDFEdit?

PDFEdit provides an API to treat page contents as a list of objects whose values and
attributes can be modified. PDFEdit allows plug-ins to read, write, edit, and create
page contents and page resources, which may contain fonts, images, extended
graphics states, and so on. For details, see Section 3.7.1, “Content Streams and
Resources” in the PDF Reference. PDFEdit also provides mapping between
document fonts and system fonts and allows creating new page content objects.

PDFEdit offers these advantages:

● PDFEdit objects are independent of each other. Each object encapsulates all the
relevant information about itself. A text object contains font attributes, for instance.

● Your plug-in can use PDFEdit methods to modify the appearance of a page. It can
convert a page’s content to a PDEContent (see “PDFEdit Paradigm” on
page 110), change the PDEContent, and then write it back to the page. Your plug-
in also can create pages from scratch.

PDFEdit Paradigm

PDFEdit converts page contents, XObjects, and charprocs to a PDEContent object
for the page. A PDEContent object contains a linear list of objects, which your plug-in
can manipulate or create from scratch. It can convert a PDEContent back to page
contents and resources, thus modifying the page. PDFEdit works with one page at a
time.

The only effect of the ordering of objects in the display list is layering. Objects that
occur later in the display list can obscure earlier objects (or partially obscure them,
with the introduction in PDF 1.4 of transparency). There is no other meaning that the

Acrobat Core API Overview 111

PDFEdit—Creating and Editing Page Content
PDFEdit Classes

7

order provides. For example, the fact that some text appears later in the list implies
nothing about its placement on the page.

When reading and modifying page display lists with PDFEdit, the resulting page
stream may be very different from the original. For example, there are many ways to
represent the text drawn on a page. PDFEdit is not constrained by the representation
used in the original page stream. The resulting stream will, of course, have exactly the
same visual representation if a plug-in simply reads a page’s contents and then writes
the contents back using PDFEdit methods.

PDFEdit works mainly with the page contents associated with the Contents key in the
page dictionary of a PDF file.

PDFEdit Classes

PDFEdit defines a set of classes to represent the contents and resources of a page.
Figure 7.1 shows the PDFEdit class inheritance hierarchy.

Like the other core API classes, these classes are implemented as C structures rather
than C++ classes.

Basic Classes

PDEObject is the base class of all PDFEdit objects.

A page display list is represented as a PDEContent object that contains
PDEElement objects. Each PDEElement object is a path, text, image, form, or a
marked content place or container of PDEElements. Objects in the PDEContent are
listed in the page’s drawing order. Your plug-in can add or remove objects inside a
PDEContent. It can also change attributes of objects in a PDEContent, such as a
bounding box, a text font, or a clipping path.

Each PDEElement contains its state: colors, matrix, fonts, and clip. Each
PDEElement is independent of the others. Therefore, the display list does not need to
be traversed to determine an object’s clip or matrix. An element can be moved or
copied from one display list to another without relying on or altering the neighboring
elements.

A plug-in can attach information to PDEElements. This information is identified by a
client ID and a client-provided key or tag. Any PDEElement can be queried for its
client ID and tag.

PDFEdit—Creating and Editing Page Content
PDFEdit Classes

7

112 Acrobat Core API Overview

FIGURE 7.1 PDFEdit Classes

Several PDFEdit classes are container classes. A PDEContent is a list of the objects
on a page. A PDEContainer contains a set of PDEElements drawn on a page
between marked content operators. A PDEClip contains a set of path and text
objects defining a clipping path.

PDEObject

PDEExtGState

PDEImage

PDEForm

PDEGroup

PDEContainer

PDEPath

PDEElement

PDEColorspace

PDEClip

PDEContent

PDESoftmask
PDEFont

PDEPattern

PDEPlace

PDEText

PDEUnknown
PDEShading

PDEDeviceN-
Colors

PDEXGroup

PDEXObject

PDEPS

Acrobat Core API Overview 113

PDFEdit—Creating and Editing Page Content
PDFEdit Classes

7

NOTE: Since all PDFEdit classes derive from the PDEObject class, your plug-in can
cast any PDFEdit object as a PDEObject and use it with PDEObject
methods.

PDEElement Classes

PDEElement is the base class of page elements. The following classes represent
these elements:

NOTE: Since these classes all derive from the PDEElement class, your plug-in can
cast any object in these classes as a PDEElement and use it with
PDEElement methods.

PDEElement Attribute Classes

PDEElements can have attributes, represented by these classes:

PDEContainer A container of PDEElements collected between marked
content BMC/EMC or BDC/EMC pairs.

PDEForm An XObject form. Forms are listed in page XObject resources.
See Section 3.7.2, “Resource Dictionaries,” in the PDF
Reference for details on the entries in a resource dictionary.

PDEGroup A container of PDEElements.

PDEImage An inline or XObject image. XObject images are listed in page
XObject resources.

PDEPath A path.

PDEPlace A place in the display list, marked by an MP or DP operator.

PDEPS A pass-through PostScript object.

PDESoftMask A reference to a Softmask object.

PDEText Text.

PDEUnknown An unknown element.

PDEXGroup A reference to an XGroup resource.

PDEXObject An arbitrary type of XObject

PDEClip Container of PDEPath and PDEText objects describing
paths and charpaths.

PDFEdit—Creating and Editing Page Content
Example

7

114 Acrobat Core API Overview

Example

The following sample outlines how to add text and a path to a page using PDFEdit
methods.

/* Get contents object for a page */
PDDoc pdDoc = PDDocCreate();
PDPage pdPage = PDDocAcquirePage(pdDoc, 0);
PDEContent pdeContent = PDPageAcquirePDEContent(pdPage, clientID);

/* Set up some objects needed... */
/* Set up m as a transformation matrix */
ASFixedMatrix m;
...
/* Set up a graphics state */
PDEGraphicStateP gstateP;
...
/* Get a system font */
PDSysFont f;
...
/* Create text and font objects */
PDEText pdeText = PDETextCreate();
PDEFont pdeFont = PDEFontCreateFromSysFont(f, 0);

/* Add text to the end of the contents */
/* Create an array to hold the text to add */
ASUns8 hello[] = "Hello!";

PDETextAdd(pdeText, kPDETextRun, 0, hello, 6, pdeFont, &gstateP,
sizeof(gstateP), NULL, 0, &m, NULL);

PDEContentAddElem(pdeContent, kPDEAfterLast, (PDEElement)pdeText);
PDERelease(pdeText);

/* Create a path and add it to contents */
Fixed pathData[6]; //array for path elements
pathData[0] = kPDEMoveTo; //moveto operator
pathData[1] = Int32ToFixed(10); // x
pathData[2] = Int32ToFixed(100); // y
pathData[3] = kPDELineeTo; //lineto operator

PDEColorSpace Color space attribute of a PDEElement. Color spaces are
listed in page ColorSpace resources.

PDEExtGState Extended Graphics State attribute of a PDEElement.
ExtGStates are listed in page ExtGState resources.

PDEFont A font. Part of a text’s font information is listed in page Font
resources.

Acrobat Core API Overview 115

PDFEdit—Creating and Editing Page Content
Comparing PDFEdit to Other Core API Methods

7

pathData[4] = Int32ToFixed(400); // x
pathData[5] = Int32ToFixed(100); // y
PDEPath pdePath = PDEPathCreate();
PDEPathSetPaintOp(pdePath, kPDEStroke);
PDEPathSetData(pdePath, pathData, 4*6);
PDEContentAddElem(pdeContent, kPDEAfterLast, (PDEElement)pdePath);
PDERelease(pdePath);

/* Put content back in page */
PDPageSetPDEContent(pdPage, clientID);
PDPageReleasePDEContent(pdPage, clientID);
PDPageRelease(pdPage);

Comparing PDFEdit to Other Core API Methods

Classes

PDFEdit has its own classes, distinct from the classes of objects used in a PDPage.
For instance, a PDEFont object is not a PDFont object.

Mapping Between PDF Operators and PDFEdit

In general, a sequence of PDF page marking operators creates the visible content of
a page. These operators may not be closely associated inside the stream.

For instance, each Tf (text state, font size) operator sets the font size and font used for
the subsequent Tj (text showing, show a text string) operator, which places a text
string in a page’s contents until the next Tf operator. Thus, for any text string, there’s a
set of associated attributes set by the Tf operator and other operators that affect text
appearance.

The PDEText object corresponding to this text also has a set of attributes. However,
these attributes are get and set with PDEText methods rather than by manipulating a
stream.

The PDF page marking operators that directly create marks on the page, such as Tj,
correspond to the PDFEdit methods that create objects, such as PDETextCreate.
The operators that determine how marks are placed on a page, such as Tf,
correspond to the PDFEdit methods that change an object’s attributes, such as
PDETextRunSetFont.

Page Contents Stream and PDFEdit Object List Correspondence

Every page in a PDF file has a contents member, which is either a stream or an array
of streams. Without PDFEdit, your plug-in would access these streams through the

PDFEdit—Creating and Editing Page Content
Comparing PDFEdit to Other Core API Methods

7

116 Acrobat Core API Overview

ASStm object methods in the core API; but as noted in “Why PDFEdit?” on page 109,
the streams are not easy to manipulate.

ASStm objects are not objects in the PDF file. They are abstractions that the core API
uses for reading, seeking, and so on.

PDFEdit converts these content streams to a PDEContent object, containing various
PDEElement objects in a list that represents the page content. The list objects can be
rearranged, removed, or added to. The objects in the list have attributes that may be
changed as well.

PDFEdit does not provide the ability to directly modify an existing page contents
stream. When a display list is converted back to a stream, an entirely new stream is
written. It is not possible to insert a stream of new bytes into, or remove a stream of
bytes from, a stream while leaving the rest of the stream unchanged.

PDFEdit does let your plug-in edit an existing page’s contents stream. It makes a copy
of the page for editing. Then it replaces the existing page with the modified copy. The
Acrobat viewer does not know the difference. As far as it is concerned, the page’s
contents stream has been updated.

Enumerating Page Objects

PDFEdit provides methods your plug-in can use to determine how many objects there
are on a page. The example code below shows how a plug-in can get the number of
objects and loop through them to obtain individual PDEElements. For each object, it
can then determine the object type.

See the Acrobat Plug-In Tutorial for details on the complete plug-in example that this
code is part of.

numElems = PDEContentGetNumElems(pdeContent);
/* loop through elements to find text */

for (j = 0; j < numElems; j++)
{
ASFixedRect bbox;
AVRect rect;
pdeElement = PDEContentGetElem(pdeContent, j);
/* determine if the object is of type text */
if (PDEObjectGetType((PDEObject) pdeElement) == kPDEText)

...

NOTE: Two core PD layer methods were available in pre-4.0 Acrobat to describe the
objects in a page description, namely: PDPageEnumContents and
PDPageEnumResources. It is not recommended that you use either of these
methods in new plug-ins, as they cannot fully parse PDF files that are version
1.2 or later.

Acrobat Core API Overview 117

PDFEdit—Creating and Editing Page Content
Comparing PDFEdit to Other Core API Methods

7

Using PDFEdit versus PDWordFinder

A PDWordFinder provides access to the PDWords of a PDPage. Given a PDWord,
your plug-in can

● Find its position and character offset on a page

● Find various attributes such as whether it has ligatures

● Get a text representation of the word

However, your plug-in cannot alter PDWords or their placement on the page.

PDFEdit does not recognize PDWords. Instead, it deals with the text on a page
represented as PDEText objects. Your plug-in not only can get information about the
text, but it can alter text and its attributes, such as the font and position on the page.

When a PDPage’s contents are first converted to a PDEContent, a plug-in can map
the PDWords in a PDWord list to the characters in the PDEContent. After changing
the PDEContent, this direct mapping is lost. A plug-in can obtain a new PDWord list
by converting a PDEContent into the contents of a PDPage, and then calling
PDWordFinderAcquireWordList.

The design of PDFEdit assumes that characters and show strings—not words—are
the basic elements of a PDEText object. When a plug-in edits and creates text
blocks, it must be able to specify the location of each character to perform kerning and
other character placement operations. Having page display operations use words as
a basic element is not general enough in this situation.

Using PDFEdit Versus PDPageAddCosContents

PDPageAddCosContents completely replaces the contents of a specified page with
new contents. The new contents must be a Cos object, which your plug-in could get
from the Contents key of the page contents provided by the PDPageGetCosObj
method. However, the Cos object contains streams that are difficult to manipulate, as
discussed in “Why PDFEdit?” on page 109.

PDFEdit allows you to manipulate or add to the objects on a page, treating them as
text, path, image, form, XObject, and container objects.

Hit Testing

PDFEdit provides the ability to locate objects at a point. The
PDEElementIsAtPoint and PDEElementIsAtRect methods allow your plug-in to
determine whether a point or rectangle is on an element. PDETextIsAtPoint and
PDETextIsAtRect provide the same capability for text objects.

PDFEdit also allows your plug-in to specify exact placement on a page of text,
graphics, and path objects. If your plug-in knows where a user clicked on screen, it
can convert the device space coordinates to user space coordinates and determine
which objects are beneath that point.

PDFEdit—Creating and Editing Page Content
Using PDFEdit Methods

7

118 Acrobat Core API Overview

Using PDFEdit Methods

Reference Counting

All PDEObjects contain a reference count. The reference count is initialized to 1
when an object is created. The count is also incremented when an object is added to
another object, such as a PDEContent, and is decremented when it is removed from
an object. When the reference count becomes 0, the object is freed and the reference
to the object is no longer valid.

A plug-in may explicitly increment or decrement the reference count of an object using
the PDEAcquire and PDERelease methods, respectively. When a plug-in no longer
needs an object, it should call PDERelease.

Objects should only be disposed of with PDERelease if the method by which they
were obtained incremented the reference count for the object. In general, methods
that “get” an object do not increment the reference count. As you recall from “Core
API Methods” on page 24, methods that increment the reference count typically
contain the word “acquire” or “create” in the method name and specifically state that
your plug-in must release the object in the method description.

All of the Create methods, including the PDEContentCreateFromCosObj method,
set the reference count to 1 on the newly created object.

When a plug-in adds an object to a container, that container’s reference count is
incremented. When a container’s reference count becomes 0, it releases all of its
contained objects. Typically, if an object is created and added to a container, a plug-in
should call PDERelease immediately after the add operation. The object then has a
reference count of 1 and will be destroyed when its container is destroyed.

Your plug-in should take care when removing an object from one container and
adding it to another. It should acquire the object before removing it from the container.
Otherwise, the container’s reference count could reach 0 when your plug-in removes
it. In this situation, adding the object to another container would be illegal since the
object would be invalid.

The Get methods in the API do not change the reference count. However, a plug-in
must be careful not to hold an object it did not acquire for too long, since a
subsequent remove operation on its container could destroy the object.

The Set methods increment the reference count of the object whose attribute is set.
For example, the PDETextRunSetFont method increments the reference count of
the font. Furthermore, the reference count of the previous attribute object (the older
font in this example) is decremented.

The PDEGraphicsState attribute contains references to up to five objects:

● Fill and stroke color spaces

● Fill and stroke color objects (if the color space is Pattern)

● The ExtGState

Acrobat Core API Overview 119

PDFEdit—Creating and Editing Page Content
Using PDFEdit Methods

7

(Some of these objects may be NULL.) The Get and Set rules apply to the
component references in this case.

A PDEObject may be contained or referenced by more than one PDEObject. This is
obvious in the case of resources such as fonts and color spaces. Other objects also
may be referenced multiple times. For example, a PDEElement may be contained in
two PDEContents.

The best approach a plug-in can take to reference counting is to:

● Create its objects

● Add the objects to a content object

● Add the content object to a page

● Release all the objects it created

Matrix Operations

Several PDEElements have matrixes associated with them.

PDFEdit flattens matrixes on input and output. When parsing a page content stream,
it sets the matrix of an element to the value of the current transformation matrix. When
parsing a path, the matrix is applied to the path segments. Thus, after parsing a page,
paths have the identity matrix, images contain the final image matrix, and text runs
contain a single matrix composed of the graphics state matrix, the text state matrix,
and the text placement and scaling operators.

The PDEElementSetMatrix method applies the matrix immediately to images;
PDETextRunSetMatrix applies the matrix immediately to text runs. The path matrix
is not applied to path segments until the page is emitted to a page content stream.
After emission, the path matrix is reset to the identity matrix. This operation is
deferred because it can be time consuming to apply the matrix to each path segment
in a large path. Because the matrix operation is deferred, a plug-in must always
examine the path matrix when processing path data.

Clip Objects and Sharing

A PDEClip object may be shared among multiple PDEElements. Therefore, care
must be taken when a plug-in changes the clip of an element, since modifying the clip
of one element can have the side effect of modifying the clip for multiple elements. If
the clip for only one element is to be changed, a plug-in should copy the clip object
and apply the modifications to the copy.

Marked Content

PDFEdit supports the marked content operators. These operators provide a
mechanism for attaching additional meaning to locations and to objects in a page
content stream. For details, see Section 8.4.2, “Marked Content,” in the PDF

PDFEdit—Creating and Editing Page Content
Using PDFEdit Methods

7

120 Acrobat Core API Overview

Reference. The PDEPlace object marks a location in a sequence of PDEElements.
The PDEContainer object marks a group of 0 or more PDEElements.

The PDEContainer contains a PDEContent, which itself contains the marked
PDEElements that constitute the markings on the page. Nested marked content
operators result in nested PDEContainers and PDEPlace objects.

When enumerating a PDEContent that contains marked content operators, it is
necessary for a plug-in to examine the PDEContainers to find all renderable
PDEElements.

Cos Objects and Documents

Many of the PDEObjects contain a reference to a Cos object. Examples include
PDEFont, PDEForm, and some PDEColorSpace objects. In the current Cos
implementation, composite and indirect objects belong to a particular document. Cos
objects cannot be intermingled between documents. For example, a dictionary in one
document cannot contain a reference to an array in another document.

When a plug-in calls PDEContentToCosObj, it specifies a destination Cos
document. If the PDEContent contains references to Cos objects in a different
document, PDFEdit makes copies of the Cos objects in the destination document and
refers to the copies.

Some of the PDFEdit Create methods can create a Cos object, such as
PDEFontCreateFromCosObj and PDEFormCreateFromCosObj. PDFEdit creates
these Cos objects in a scratch document that it maintains. This can result in
unexpected behavior from the GetCosObj methods. A method may return the
original object from which the PDEObject was instantiated, or it may return a copy of
the Cos object in a different document.

XObjects and PDEObjects

A Cos XObject resource (an image or a form) may occur more than once on a page. A
distinct PDEElement is created for each occurrence, but the PDEElements share the
underlying Cos object. Each PDEElement typically has a distinct matrix and graphic
state. When a PDEContent is written to a stream, multiple references to the Cos
objects are recognized such that all instances of an XObject are referred to by the
same resource name.

Resources

In PDF, page content streams do not directly refer to Cos resources. Instead, they
refer to them by a name that is used to look up the Cos resource in the Resources
dictionary. When reading and writing streams in an existing document, PDFEdit tries
to preserve the original page resource names. When this is not possible, PDFEdit
generates new names as required.

Acrobat Core API Overview 121

PDFEdit—Creating and Editing Page Content
Guide to Page Creation

7

PDFEdit maintains a list of names and Cos objects for each open document to which
any PDFEdit operation has been performed. Every time a stream is generated,
PDFEdit consults the database. If no name exists for a Cos object, it generates a new
name and adds the name to the database. If a name exists but is already in use by
another Cos object, it generates an alternative name. Thus, a single Cos object may
be referenced by different names in different page content streams.

For example, consider a document with two pages. Page 1 contains text set in
Helvetica, and the font’s page resource name is F1. Page 2 contains text set in Times-
Roman, and the font’s page resource name also is F1. Now, if a plug-in adds
Helvetica text to page 2, it cannot use the resource name F1, because F1 already
refers to Times-Roman on this page. Therefore, PDFEdit generates a new page
resource name for the Helvetica added to page 2.

Each form (and Type 3 font) should contain a resources dictionary. It is the plug-in’s
responsibility to put the resources dictionary in the form’s attribute dictionary upon
return from the PDEContentToCosObj method when the PDEContent is a form.

Client Identifiers

Some methods such as PDEAddTag or PDPageAcquirePDEContent require a
client identifier (ID).

A plug-in should use its gExtensionID for the client ID.

When several plug-ins want to operate on the same page at the same time, they
should use a separate ID for each thread.

Guide to Page Creation

In general, a plug-in should use PDPageAcquirePDEContent to obtain a page’s
PDEContent. The plug-in can modify the PDEContent with PDFEdit methods as
desired. Then it should put the PDEContent back on the page with
PDPageSetPDEContent and call PDPageReleasePDEContent after it is
completely done with the page.

Common Code Sequence

A plug-in can frequently use a sequence like this to get a page’s contents, modify it,
and put it back:

PDEContent pdecontent;
PDPage pdpage;
ASBool result;
ASInt32 count;

/* Get page’s contents */
pdecontent = PDPageAcquirePDEContent(pdpage, clientID);

PDFEdit—Creating and Editing Page Content
Guide to Page Creation

7

122 Acrobat Core API Overview

/* Modify the contents */
...
/* Put the contents back in the page */
result = PDPageSetPDEContent(pdpage, clientID);
/* Clean up */
count = PDPageReleasePDEContent(pdpage, clientID);
/* Release the page */
PDPageRelease(pdpage);

Ways To Modify a Page’s Content

This section shows how to modify a page’s content in various ways.

Sequence for Adding Text to a Page
/* Enumerate the system fonts. Look for font=FONTNAME */
/* The fontEnumProc callback looks for a font */

PDEFont gFont;
char buf[255];
PDEText pdeText = NULL;
PDETextState tState;
FixedMatrix matrix;
PDEFontAttrs textFontAttr;
PDEGraphicState gstate;

PDEnumSysFonts(fontEnumProc, (void *)FONTNAME);

/* If font found, proceed */
if (gFont) {
strcpy(buf, "Added text...");

/* Create a new PDEText object */
pdeText = PDETextCreate();
memset(&tState, 0, sizeof(PDETextState));

/* Set the text matrix to 24 pt type, v=300 pts, h=72 pts */
memset(&matrix, 0, sizeof(FixedMatrix));
matrix.a = Int16ToFixed(24);
matrix.d = Int16ToFixed(24);
matrix.v = Int16ToFixed(300);
matrix.h = Int16ToFixed(72);

/* Set the text attributes, including font name and type of font */
/* Type of font could be Type1, MMType1, or TrueType */

memset(&textFontAttr, 0, sizeof(textFontAttr));
textFontAttr.name = ASAtomFromString(FONTNAME);
textFontAttr.type = ASAtomFromString("Type1");

/* Set up the default Graphics state */

Acrobat Core API Overview 123

PDFEdit—Creating and Editing Page Content
Guide to Page Creation

7

memset(&gstate, 0, sizeof(PDEGraphicState));
gstate.strokeColorSpec.space =
gstate.fillColorSpec.space = pdeColorSpace;
gstate.miterLimit = fixedTen; /* constants */
gstate.flatness = fixedOne;
gstate.lineWidth = fixedOne;

/* Create PDEText object as a text run, */
/* and add to PDEContent */
PDETextAdd(pdeText, kPDETextRun, 0, (unsigned char *)buf,
strlen(buf), gFont, &gstate, sizeof(gstate), &tState,
sizeof(PDETextState), &matrix, NULL);

/* Add to end of contents */
PDEContentAddElem(pdecontent, kPDEAfterLast, (PDEElement)pdeText);

/* Release the PDEText object after it has been added */
PDERelease((PDEObject)pdeText);
}

Sequence for Adding a Path to a Page
/* Draw a filled rectangle */
PDEColorSpace pdeColorSpace;
PDEPath pdePath;
Fixed pathSeg[5];
PDEGraphicState gstate;

pdeColorSpace =
PDEColorSpaceCreateFromName(ASAtomFromString("DeviceGray"));

/* Draw a filled in rectangle */
pdePath = PDEPathCreate();
pathSeg[0] = kPDERect; /* rectangle */
pathSeg[1] = Int32ToFixed(72); /* x */
pathSeg[2] = Int32ToFixed(2*72); /* y */
pathSeg[3] = Int32ToFixed(3*72); /* width */
pathSeg[4] = Int32ToFixed(72); /* height */

PDEPathSetPaintOp(pdePath, kPDEFill);

/* Set up the default Graphics state */
memset(&gstate, 0, sizeof(PDEGraphicState));
gstate.strokeColorSpec.space = gstate.fillColorSpec.space =
pdeColorSpace;
gstate.miterLimit = fixedTen; /* constants */
gstate.flatness = fixedOne;
gstate.lineWidth = fixedOne;

PDEElementSetGState((PDEElement) pdePath, &gstate, sizeof(gstate));
PDEPathSetData(pdePath, pathSeg, sizeof(pathSeg));

PDFEdit—Creating and Editing Page Content
Guide to Page Creation

7

124 Acrobat Core API Overview

/* Add rectangle to end of PDEContent */
PDEContentAddElem(pdecontent, kPDEAfterLast, (PDEElement)pdePath);
/* Release the PDEPath object */
PDERelease((PDEObject)pdePath);

Sequence for Adding an Image to a Page
/* Create a simple bitmap graphic */
char* data;
PDEImageAttrs imageAttrs;
FixedMatrix matrix;
PDEColorValue pdeColorValue;
PDEColorSpace pdeColorSpace;
PDEImage pdeImage = NULL;

pdeColorSpace =
PDEColorSpaceCreateFromName(ASAtomFromString("DeviceGray"));

data = (char*)ASmalloc(sizeof(char)*10000);
if (data)
{

memset(&imageAttrs, 0, sizeof(PDEImageAttrs));
imageAttrs.flags = kPDEImageExternal;
imageAttrs.width = 100L;
imageAttrs.height = 100L;
imageAttrs.bitsPerComponent = 8L;

/* Fill in matrix for image. Offset it to v=500 pts, h=72 pts */
matrix.a = Int16ToFixed(100);
matrix.b = matrix.c = fixedZero;
matrix.d = Int16ToFixed(-100);
matrix.v = Int16ToFixed(500);
matrix.h = Int16ToFixed(72);

memset(&pdeColorValue, 0, sizeof(PDEColorValue));
pdeColorValue.color[0] = fixedZero;

/* Create stream for image data (you can also use a */
/* file stream or a proc stream) */
memset(data, 0, 10000);
for (i = 0; i < 5000; i++)

data[i]=1;
stm = ASMemStmRdOpen(data, 10000L);

pdeImage = PDEImageCreate(&imageAttrs, (Uns32)sizeof(imageAttrs),
&matrix, 0, pdeColorSpace, &pdeColorValue, NULL, stm,
NULL, 0);

/* Add the image to end of PDEContent */
if (pdeImage)
{

PDEContentAddElem(pdecontent, kPDEAfterLast,

Acrobat Core API Overview 125

PDFEdit—Creating and Editing Page Content
Guide to Page Creation

7

(PDEElement)pdeImage);
PDERelease((PDEObject)pdeImage);

}

/* Close the stream and free the image data */
if (stm)

ASStmClose(stm);
if (data)

ASfree(data);
}

Generating Efficient Pages

Create a PDPage before creating the PDEContent for it. Page notifications work
better this way.

Font Embedding and Subsetting

To author a document with an embedded system font, a plug-in must set the
kPDEFontCreateEmbedded flag when calling PDEFontCreateFromSysFont.
This causes the font to be embedded when first used in a document; no further work
is required.

To author a document with an embedded and subsetted system font, a plug-in must
set both the kPDEFontCreateEmbedded and kPDEFontWillSubset flags when
calling PDEFontCreateFromSysFont. The font is embedded and given a subset
name, but it is not subsetted until later. The plug-in can then use characters from the
font at will; PDFEdit tracks which characters were actually emitted into each CosDoc
via PDEContentToCosObj. PDFEdit tracks character usage separately for each
CosDoc in which a font is used.

A plug-in eventually must call PDEFontSubsetNow on a font to subset it. The font is
subsetted to contain only the characters used in the PDEText objects that reference
that font. The plug-in should call PDEFontSubsetNow after it has set the content for
the page. Calling PDEFontSubsetNow on a font that was not created using the
kPDEFontWillSubset flag does nothing.

A font that is created using the kPDEFontCreateEmbedded flag is always
embedded. A plug-in does not need to call PDEFontSubsetNow if it sets the
kPDEFontWillSubset flag. In addition, it is possible for a plug-in to call
PDEFontSubsetNow multiple times. The subsetted data is rewritten with glyphs for
any additional text used with the font.

A plug-in also can call PDEmbedSysFontForPDEFont to embed a system font,
including one for which kPDEFontWillSubset was specified. Therefore, the plug-in
can create a font with the kPDEFontWillSubset flag, and, at a later time, decide to
leave the font unembedded (by doing nothing), create the subset by calling
PDEFontSubsetNow, or embed the entire font by calling
PDEmbedSysFontForPDEFont.

PDFEdit—Creating and Editing Page Content
Debugging Tools and Techniques

7

126 Acrobat Core API Overview

Proper Use of Marked Content

Marked content allows a plug-in to identify, characterize, and organize a PDF file. For
instance, it may mark a set of paragraphs with style information. Similarly, a place in
the document may have information for looking up entries in a database. The
structure that marked content provides to a document can facilitate extracting data
from a PDF file or converting it to another file format. Structural information could be
used by other programs to implement PDF and Acrobat enhancements.

PDF marked content operators are used in page descriptions to indicate a part of the
stream that may be significant to an application other than a strict PDF consumer.
These operators attach a tag and, optionally, a property list, to part of the stream.

There are two kinds of marks, those that bracket a sequence of objects, and those
that mark a place in the stream. These operators may appear only between objects.

The BMC/EMC or BDC/EMC operators bracket an object sequence and correspond to
the PDEContainer, which contains a set of objects. This is useful for grouping
objects that “belong” together in some sense, defined by the document creator.
Bracketed sequences may be nested within each other, and thus a PDEContainer
may contain other PDEContainer objects.

Places are marked with either MP or DP operators. These correspond to the
PDEPlace object, which marks a place in the object list. Theoretically, your plug-in
could bracket a sequence of operators with a pair of related PDPlace objects, but this
is not recommended. Use the PDEContainer for enclosing a set of objects.

The BDC and DP operators take a property list dictionary argument; otherwise they
function identically to BMC and MP operators. Similarly, the PDEContainerCreate
and PDEPlaceCreate methods take an optional dictionary parameter, in addition to
a tag for the object. Use this dictionary to provide additional information about the
PDEContainer or PDEPlace, if needed.

For details on the marked content operators, see Section 8.4.2, “Marked Content,” in
the PDF Reference.

Debugging Tools and Techniques

Dump methods allow dumping objects and their attributes.

Object Dump

The PDEObjectDump enumeration method gets a text description of a given object.
Since objects can be nested—PDEContent objects can contain other objects—your
plug-in specifies the nesting level for the children and attributes it wants to see. The
PDEObjectDumpProc callback specified in PDEObjectDump returns a buffer with
text describing each object.

The following example illustrates dumping a content object, pdecontent, to a file:

Acrobat Core API Overview 127

PDFEdit—Creating and Editing Page Content
Debugging Tools and Techniques

7

/* Dump the content object */
PDEContent pdecontent;
...
PDEObjectDump((PDEObject)pdecontent, 10,

ASCallbackCreateProto(PDEObjectDumpProc, myPDEObjectDumpProc),
NULL);

...
/* Dump callback function */
ACCB1 void ACCB2 myPDEObjectDumpProc(PDEObject pdeobject,

char* dumpInfo, void* clientData)
{
/* Output the data to a file */
FILE *f;

f=fopen(":PDEObjectDump.txt", "a");
if (f)
{

fprintf(f, "%s\n", dumpInfo);
fclose(f);

}
}

Here is a dump of a PDEContent object, showing its flags and number of elements,
among other information. It also includes the objects inside the PDEContent:

● A path

● An image

● A text object

The number after the pound sign (#) is each object’s reference count.

Content (0) #1 3a9d264
Content flags: none Num elems: 3

Path (2) #1 3a9d31c
Op: fill Size: 20 bbox 71 143 288 216
{

ColorSpace (9) #6 3a9d2fc
{DeviceGray }
fill: DeviceGray 0 0 0 0
Rect: 72 144 216 72

}

Image (3) #1 3a9dbec
CSpace: DeviceGray bbox 72 400 172 500

Text (1) #1 3a9dbac
Num elems: 1
{

font: 3a9e2cc
matrix: 24 0 0 24 72 300 bbox 67 294 256 323

PDFEdit—Creating and Editing Page Content
PDFEdit Methods

7

128 Acrobat Core API Overview

fill: DeviceGray 0 0 0 0
This is a test.

}

The objects inside the PDEContent could also be dumped individually.

Dump Log

The PDELogDump method’s PDEObjectDumpProc callback returns a buffer with text
describing each object that has been created. The text is in the object dump format
noted above.

Attribute Enumeration

The PDEAttrEnumTable method enumerates the shared resource objects,
providing their reference counts.

Reference Counts

Your plug-in can determine if any object has a non-zero reference count, that is, it has
not released the object.

After your plug-in has released a page, it should call PDEAttrEnumTable with an
enumeration function. The function is called back with every attribute object that has a
reference count greater than 0. The enumeration function provides an opaque pointer
to each object, which your plug-in can compare to the objects it created to check if it
did not release an object.

NOTE: Some objects, such as fonts, are allocated at initialization time and deallocated
at termination time, so some PDEObjects are left over after your plug-in
completes its processing of the PDF file and releases objects it created.

PDFEdit Methods

Dump Methods

Dump methods allow enumerating objects and their attributes. An object’s information
can be dumped in human readable form. An object dump includes its reference count,
which is useful in debugging reference count problems. The Dump methods include:

PDELogDump Enumerates PDEObjects.

PDEObjectDump Dumps an ASCII version of an object, its children,
and their attributes.

PDEAttrEnumTable Enumerates the table of attributes.

Acrobat Core API Overview 129

PDFEdit—Creating and Editing Page Content
PDEClip

7

General Methods

These utility methods simplify tasks, such as setting up graphics information
structures and merging resources for a page. The General methods include the
following:

PDEClip

A PDEClip is a list of PDEElements containing a list of PDEPaths and PDETexts
that describe a clipping state. PDEClips can be created and built up with PDEClip
methods. Any PDEElement object can have PDEClip associated with it by using the
PDEElementSetClip method. The PDEClip methods include the following:

PDEColorSpace

A PDEColorSpace object is a reference to a color space used on a page. The color
space is part of the graphics state attributes of a PDEElement. See Sections 4.5,
“Color Spaces,” in the PDF Reference, for details on color spaces and color
operators. The PDEColorSpace methods include the following:

PDEDefaultGState Fills out a structure with the default graphic state.

PDEEnumElements Enumerates all PDEElements in a given stream.

PDEMergeResourcesDict Merges two resources dictionaries.

PDEClipAddElem Adds an element to a clipping path.

PDEClipCreate Creates an empty clip object.

PDEClipGetElem Gets an element from a clip object.

PDEClipGetNumElems Gets the number of path and charpath elements in
a clip object.

PDEClipRemoveElems Removes one or more elements from a clip object.

PDEColorSpaceCreate Creates a new color space object of the
specified type.

PDEColorSpaceCreateFromCosObj Creates a color space object from a
Cos object.

PDFEdit—Creating and Editing Page Content
PDEContainer

7

130 Acrobat Core API Overview

PDEContainer

A PDEContainer contains a group of PDEElements on a page. In the PDF file,
containers are delimited by the Marked Content operator pairs BMC/EMC or
BDC/EMC. Every PDEContainer has a Marked Content tag associated with it. In
addition to grouping a set of elements, a BDC/EMC pair specifies a property list to be
associated with the grouping. Thus a PDEContainer corresponding to a BDC/EMC
operator pair also has a property list dictionary associated with it.

For example, the following PDF marking operators would correspond to a
PDEContainer that contains several paths and has the tag PathABC:

\PathABC BMC
1 g
84.96 745.2 449.28 -9.596 ref
1 g
427.957 153.071 m
435.4 153.071 441.436 159.107 441.436 166.549
c
441.436 173.993 435.4 180.028 427.957 180.028
c
420.514 180.028 414.479 173.993 414.479
166.549 c
414.479 159.107 420.514 153.071 427.957
153.071 c
b
EMC

A PDEContainer is itself a PDEElement, so a PDEContainer can contain other
PDEContainer objects, which would reflect nested marked content operator pairs.

Marked content is useful for adding structure information to a PDF file. For instance, a
text processing program may have font and style information associated with a
paragraph. You may want to retain this information in the PDF file, and marked content
provides a means to do so.

See Sections 8.4.2, “Marked Content,” in the PDF Reference, for information on
marked content and property lists.

PDEColorSpaceGetBase Obtains the name of the base color
space.

PDEColorSpaceGetBaseNumComps Gets the number of components in the
base color space of an indexed color
space.

PDEColorSpaceGetCosObj Gets a Cos object for a color space.

PDEColorSpaceGetCTable Obtains component information for an
indexed color space.

Acrobat Core API Overview 131

PDFEdit—Creating and Editing Page Content
PDEContent

7

A PDEPlace object allows marking a single point in a PDF file with information rather
than marking a group of objects.

The PDEContainer methods include:

PDEContent

The PDEContent object is the workhorse of the PDFEdit API, since it contains the
modifiable contents of a PDPage.

A PDEContent may be obtained from an existing page or from a form XObject or
from a Type 3 charproc. You can create an empty PDEContent. A PDEContent
contains PDEElements. In addition, a PDEContent may have attributes such as
Form matrix and setcachedevice parameters.

The simplest way to obtain the PDEContent for a page is with the
PDPageAcquirePDEContent method. After your plug-in modifies the content, it can
put it back in the page with PDPageSetPDEContent, using the same filters with
which the page was originally encoded.

Once your plug-in has the page’s PDEContent, it can get, add, or remove elements
with PDEContent methods. It can modify individual page elements with the methods
for PDEElements, such as PDEText or PDEPath.

The PDEContent methods include:

PDEContainerCreate Creates a container object.

PDEContainerGetContent Gets the PDEContent for a PDEContainer.

PDEContainerGetDict Gets the marked content dictionary for a container.

PDEContainerGetMCTag Obtains the marked content tag for a container.

PDEContainerSetContent Sets the content for a container.

PDEContentAddElem Inserts an element into a PDEContent.

PDEContentCreate Creates an empty content object.

PDEContentGetElem Gets the requested element from a content.

PDEContentGetNumElems Gets the number of elements in a PDEContent.

PDEContentGetResources Obtains the number of resources of a specified
type and, optionally, pointers to the resource
objects.

PDEContentRemoveElem Removes an element from a PDEContent.

PDFEdit—Creating and Editing Page Content
PDEDeviceNColors

7

132 Acrobat Core API Overview

PDEDeviceNColors

A color space with a variable number of device-dependent components. Usually used
to store multiple spot colors in a single color space. The PDEDeviceNColors
methods include:

PDEElement

PDEElement is the base class for elements of a page display list (PDEContent) and
for clip objects. The general PDEElement methods allow you to get and set general
element properties.

PDEElement is an abstract superclass from which the PDEContainer, PDEForm,
PDEImage, PDEPath, PDEPlace, PDEText, and PDEXObject classes are derived.
Your plug-in can find the type of an element with the PDEObjectGetType method. It
can then cast and apply the methods in that class to the object. In addition, it can cast
any PDEElement subclass object to a PDEElement and use it anywhere a
PDEElement is called for, such as in PDEElement methods. The PDEElement
methods include the following:

PDEContentToCosObj Converts a PDEContent into PDF contents and
resources.

PDEDeviceNColorsCreate Creates an object that can be used to
store n color components when in a
PDEDeviceNColors color space.

PDEDeviceNColorsGetColorValue Gets the value of a color component of a
PDEDeviceNColors color space.

PDEElementCopy Makes a copy of an element.

PDEElementGetBBox Obtains the bounding box for an element.

PDEElementGetClip Gets the current clip for an element.

PDEElementGetGState Obtains the graphics state information for an
element.

PDEElementGetMatrix Obtains the transformation matrix for an element.

Acrobat Core API Overview 133

PDFEdit—Creating and Editing Page Content
PDEExtGState

7

PDEExtGState

A PDEExtGState object is a reference to an ExtGState resource used on a page.
It specifies a PDEElement’s extended graphics state, which is part of its graphics
state, as specified in a PDEGraphicState structure. See Section 7.15 and
Section 8.2 in the PDF Reference, for information on extended graphics states.

// The graphics state controls the various style properties of the text
// including color, weight, and so forth.

memset (&gState, 0, sizeof(PDEGraphicState));
gState.strokeColorSpec.space = gState.fillColorSpec.space =
pdeColorSpace;
gState.miterLimit = fixedTen;
gState.flatness = fixedOne;
gState.lineWidth = fixedOne;
gState.extGState = pdeExtGState;
gState.wasSetFlags = kPDEMiterLimitWasSet | kPDEFlatnessWasSet |

kPDELineWidthWasSet | kPDEExtGStateWasSet;

You can get or set the graphics state associated with a PDEElement or PDEText
object with the PDEElementGetGState or PDEElementSetGState methods.

Setting the Opacity of an Object

With Acrobat 5.0 and PDF 1.4 and higher, every object has an opacity property
(default is opaque) in the extended graphics state. The code snippet below shows
how to add the opacity property to either existing or new elements:

DURING
pdeExtGState = PDEExtGStateCreateNew (PDDocGetCosDoc(pdDoc));
PDEExtGStateSetOpacityFill (pdeExtGState, FloatToFixed(0.5));
PDEExtGStateSetOpacityStroke (pdeExtGState, FloatToFixed(0.5));

HANDLER
if (pdeExtGState) {

PDERelease ((PDEObject) pdeExtGState);
pdeExtGState = NULL;

}
END_HANDLER

For information on transparency, see the section entitled “Transparency in PDF” in
PDF: Changes From Version 1.3 to 1.4.

PDEExtGState Methods

The PDEExtGState methods include the following:

PDEExtGStateCreate Creates a new PDEExtGState from a Cos
object.

PDFEdit—Creating and Editing Page Content
PDEFont

7

134 Acrobat Core API Overview

PDEFont

A PDEFont object is a reference to a font used on a page. It may be equated with a
font in the system. A PDEFont is not the same as a PDFont; a PDEFont is
associated with a particular document.

See Sections 7.7 to 7.9 in the PDF Reference, for information on fonts.

A PDSysFont object represents a system font and is a distinct object from a
PDEFont. You can create a PDEFont from a system font with the
PDEFontCreateFromSysFont method.

PDEExtGStateGetCosObj Obtains a Cos object for a PDEExtGState.

PDEExtGStateGetOpacityFill Gets the opacity value for the fill of the
PDEElement.

PDEExtGStateGetOpacityStroke Gets the opacity value for the stroke of the
PDEElement.

PDEExtGStateGetOPFill Determines whether overprint is turned on
for the fill of the PDEElement.

PDEExtGStateGetOPM Gets the overprint mode.

PDEExtGStateSetOpacityFill Sets the opacity value for fill operations.

PDEExtGStateSetOpacityStroke Sets the opacity value for stroke operations.

PDEExtGStateSetOPStroke Sets the overprint value for stroke
operations.

Acrobat Core API Overview 135

PDFEdit—Creating and Editing Page Content
PDEForm

7

Your plug-in can set the font of a text run with the PDETextRunSetFont method. The
PDEFont methods include the following:

When creating a new PDEFont with PDEFontCreateWithParams, the PDEFont
may be represented as an embedded font (a FontFile value in PDF). To create a
PDEFont that will be stored as an embedded font, the FontFile stream may be
passed as fontStm, and the len1, len2, and len3 parameters contain the
Length1, Length2, and Length3 values of the FontFile. The caller must close the
fontStm after calling this PDEFontCreateWithParams. This method extends
PDEFontCreate to support multibyte fonts.

PDEForm

A PDEForm is a PDEElement that contains a form XObject. Form XObjects are
described in Section 4.9, “Form XObjects,” in the PDF Reference, second edition,
version 1.3. A PDEContent may be obtained from a PDEForm to edit the form’s
display list. The PDEForm methods include:

PDEFontCreate Creates a new PDEFont from specified
parameters.

PDEFontCreateFromCosObj Creates a PDEFont corresponding to a Cos
object.

PDEFontCreateWithParams Creates a new PDEFont from parameters.

PDEFontGetAttrs Obtains the attributes for a font object.

PDEFontGetCosObj Obtains a Cos object for a PDEFont.

PDEFontGetWidths Gets the widths for a font object.

PDEFontSubsetNow Subsets a PDEFont in a CosDoc.

PDEFormCreateFromCosObj Creates a new form from a Cos object.

PDEFormGetContent Obtains a PDEContent object for a form.

PDEFormGetCosObj Obtains a Cos object from a form.

PDFEdit—Creating and Editing Page Content
PDEGroup

7

136 Acrobat Core API Overview

PDEGroup

A PDEElement that specifies the beginning and ending of marked content in a PDF
file. Any objects added to a PDEGroup object will be surrounded by the BMC/EMC
marked content tags. The PDEGroup methods include:

PDEImage

A PDEImage is a PDEElement that contains an image XObject or inline image.
Image XObjects and inline images are described in the following sections in the PDF
Reference:

● Section 4.1, “Graphic Objects”

● Section 4.7, “External Objects”

● Section 4.8.6, “Inline Images”

You can associate data or a stream with an image via PDEImageSetData and
PDEImageSetDataStm methods. PDEImage methods allow your plug-in to get and
set properties of images, such as the color space and filters. Additional PDEImage
methods include:

PDEGroupCreate Creates a PDEGroup object.

PDEGroupSetContent Sets the PDEContent for a PDEGroup. The existing
PDEContent is released by this method.

PDEImageCreate Creates an image object from a stream
or buffer of image data.

PDEImageCreateFromCosObj Creates an image object from a Cos
object.

PDEImageDataIsEncoded Determines if image data is encoded.

PDEImageGetAttrs Obtains attributes for an image.

PDEImageGetData Gets an image’s data.

PDEImageGetFilterArray Obtains the filter array for an image.

PDEImageIsCosObj Determines if an image is represented by
a Cos object.

Acrobat Core API Overview 137

PDFEdit—Creating and Editing Page Content
PDEObject

7

PDEObject

PDEObject is the abstract superclass of PDFEdit classes. You can find the type of
any object with the PDEObjectGetType method. You can then cast and apply that
class’ methods to the object. In addition, you can cast any of the PDFEdit objects to a
PDEObject and use it anywhere a PDEObject is called for, such as in the
PDEObject methods. PDEAcquire and PDERelease increment and decrement the
reference counts of a PDEObject.

PDEObject methods include:

PDEPath

A PDEPath is a PDEElement that contains a path. It can have fill and stroke
attributes. It also has graphics state attributes. The shape of a PDEPath can be used
to represent a clipping path.

The PDEPath methods allow constructing a path from segments and setting its fill
and stroke attributes. PDEPath methods include:

PDEPattern

A PDEPattern is a reference to a pattern resource used on a page. See Section 4.6
in the PDF Reference, for information on patterns. PDEPath methods include:

PDEAcquire Increments the reference count for an object.

PDEAddTag Adds an identifier—value pair to an object.

PDEGetTag Obtains an object’s value for a given client ID.

PDERemoveTag Removes an object’s value for a given client ID.

PDEPathAddSegment Adds a segment to a path.

PDEPathCreate Creates an empty path element.

PDEPathGetData Obtains size of path data and, optionally, path data.

PDEPathSetPaintOp Sets fill and stroke attributes of a path.

PDEPatternCreate Creates a pattern object.

PDFEdit—Creating and Editing Page Content
PDEPlace

7

138 Acrobat Core API Overview

PDEPlace

A PDEPlace is a PDEElement that marks a place on a page. In a PDF file, a place
is represented by the MP or DP marked content operators.

Marked content is useful for adding structure information to a PDF file. For instance, a
drawing program may want to mark a point with information, such as the start of a
path of a certain type. Marked content provides a way to retain this information in the
PDF file. A DP operator functions the same as the MP operator and, in addition, allows
a property list dictionary to be associated with a place.

See Section 8.4.2, “Marked Content,” in the PDF Reference, for information on
marked content and property lists.

A PDEPlace object allows marking a particular group of objects in a PDF file, rather
than a place, with information.

PDEPlace methods include:

PDEPS

A PDEPS is a pass-through PostScript object. PDEPS methods include:

PDEPatternGetCosObj Obtains a Cos object corresponding to a pattern
object.

PDEPlaceCreate Creates a place object.

PDEPlaceGetDict Obtains the marked content dictionary for a PDEPlace.

PDEPlaceSetMCTag Sets the marked content tag for a PDEPlace.

PDEPSCreate Creates a PDEPS object.

PDEPSCreateFromCosObj Creates a PDEPS object from a CosObj
object.

PDEPSGetAttrs Returns a PDEPS object’s attributes.

PDEPSSetData Sets the data for a PDEPS object.

Acrobat Core API Overview 139

PDFEdit—Creating and Editing Page Content
PDEShading

7

PDEShading

A PDEShading is a PDEElement that represents smooth shading. PDEShading
methods include:

PDESoftMask

A PDESoftMask is a reference to a SoftMask resource used to support transparency.
PDESoftMask methods include:

PDEText

A PDEText object is a PDEElement that represents text. It is a container for text as
show strings or as individual characters. Each subelement may have different
graphics state properties. However, the same clipping path applies to all sub-
elements of a PDEText. Also, the charpath of a PDEText object can be used to
represent a clipping path.

Text consists of text runs, which are runs of characters in a PDF file with the same
attributes. For instance, the text in the string before a Tj operator would constitute a
text run or part of a text run. PDFEdit combines text from multiple Tj operators into a
single text run, when possible.

NOTE: All text is in text runs. It’s possible for a text run to be a single character.

Many PDEText methods take an index parameter to indicate a text position. These
methods also take a PDETextFlags parameter to indicate whether a plug-in is
accessing the text by characters or by text runs. If the plug-in uses the
kPDETextChar flag, the index is the character offset from the beginning of the text
element. This lets a plug-in ignore the fact that the PDEText consists of text runs. If a
plug-in uses the kPDETextRun flag, the index is the index of the text run in the text
element. Accessing text by text run is faster than accessing text a character at a time.

PDEShadingCreateFromCosObj Creates a smooth shading object.

PDEShadingGetCosObj Gets the CosObj for a PDEShading.

PDESoftMaskAcquireForm Acquires the XObject form of the soft mask.

PDESoftMaskGetBackdropColor Gets the array of color values of the
backdrop color.

PDFEdit—Creating and Editing Page Content
PDEUnknown

7

140 Acrobat Core API Overview

A plug-in can get and set attributes (such as the font or text matrix) of a PDEText
object with PDEText methods. PDEText methods include:

PDEUnknown

A PDEUnknown is a PDEElement representing an unknown element. The
PDEUnknownGetOpName method gets the operator name of an unknown operator.

PDEXGroup

A PDEXGroup is a reference to an XGroup resource used to support transparency.
PDEXGroup methods include:

PDETextAdd Adds a character or text run to a PDEText object.

PDETextCreate Creates an empty text object.

PDETextGetBBox Obtains the bounding box of a character or text
run.

PDETextGetGState Obtains the graphics state of a character or text
run.

PDETextGetNumChars Obtains the number of characters in a text object.

PDETextGetTextState Obtains the text state of a character or text run.

PDETextRunGetCharOffset Obtains the character offset of the first character
of a text run.

PDETextRunSetFont Sets the font of a text run.

PDETextRunSetTextState Sets the text state of a text run.

PDETextSplitRunAt Splits a text run into two text runs.

PDEXGroupAcquireColorSpace Acquires the color space of the transparency
group.

PDEXGroupCreate Create a new XGroup of the given type (must
be kPDEXGroupTypeTransparency).

PDEXGroupGetKnockout Gets the knockout boolean value of the
transparency group.

Acrobat Core API Overview 141

PDFEdit—Creating and Editing Page Content
PDEXObject

7

PDEXObject

A PDEXObject object is a PDEElement representing an arbitrary XObject. See
Section 4.7, “External XObjects,” in the PDF Reference, for information on XObjects.
PDEXObject methods include:

NOTE: Use the appropriate methods for PDEForm and PDEImage objects. Do not use
PDEXObject methods.

PDSysEncoding

A PDSysEncoding is a subclass of PDEElement that provides system encoding for
a PDF file. PDSysEncoding methods include:

PDSysFont

A PDSysFont is a reference to a font installed on the host system. PDSysFont
methods allow your plug-in to list the fonts available on the host system and to find a
font on the system that matches a PDEFont, if it is present.

The PDSysFont and PDEFont classes are distinct. Your plug-in can create a
PDEFont from a system font with the PDEFontCreateFromSysFont method. It can
determine what system fonts are available using the PDEnumSysFonts and
PDFindSysFont methods.

PDSysFont methods include:

PDEXObjectCreate Creates a new PDEXObject from a Cos object.

PDEXObjectGetCosObj Gets a Cos object corresponding to a PDEXObject.

PDSysEncodingCreateFromBaseName Create an encoding object from
base name.

PDSysEncodingGetWMode Returns the writing mode (0 for
horizontal writing; 1 for vertical).

PDEnumSysFonts Enumerates all the system fonts.

PDFindSysFont Finds the system font that matches given attributes.

PDSysFontGetAttrs Obtains the attributes of a system font.

PDSysFontGetEncoding Obtains encoding of single byte encoded system font.

PDFEdit—Creating and Editing Page Content
PDSysFont

7

142 Acrobat Core API Overview

PDSysFontGetName Obtains the PostScript or TrueType styled name for a
system font.

Acrobat Core API Overview 143

8 PDSEdit—Creating and Editing
Logical Structure

Introduction

PDF files are well known for representing the physical layout of a document; that is,
the page markings that comprise the page contents. In addition, PDF versions 1.3
and beyond provide a mechanism for describing logical structure in PDF files. This
includes information such as the organization of the document into chapters and
sections, as well as figures, tables, and footnotes.

Further, PDF 1.4 and Acrobat 5 introduced tagged PDF, which is a particular use of
structured PDF that allows page content to be extracted and used for various
purposes such as reflow of text and graphics, conversion to file formats such as
HTML and XML, and accessibility to the visually impaired.

This chapter describes how to create and access structure information in a PDF
document. The PDSEdit methods in the core API provide access to this capability.

To use PDSEdit effectively in the plug-ins you write, you should understand how
logical structure is represented in a PDF file. For details, see Section 8.4.3, “Logical
Structure in PDF,” in the PDF Reference.

Why Have Logical Structure?

Text on a page might clearly represent a paragraph or section to a reader, but prior to
PDF 1.3 nothing in a PDF file represented such elements. When the original
application generated the PDF file, information on the structure of a document’s
content was lost. A PDF file could not distinguish paragraphs nor readily store
paragraph style information.

Similarly, the core API prior to Acrobat 4.0 provided no way to extract paragraphs or
other such text structures from a PDF file. The only text objects obtainable at the time
were:

● Words and text selections, using PDWord and PDTextSelect object methods
provided in the PD layer of the core API.

● Text on a page, using PDEText object methods in the PDFEdit API (described in
Chapter 7).

It became increasingly important for users be able to access the meta-information in
the PDF document itself, without going to the original document and application--key
reasons to have a portable document format in the first place.

Figure 8.1 illustrates the relationship of some structural elements on a document
page. It shows a structure hierarchy, namely, an article containing two paragraphs (P)

PDSEdit—Creating and Editing Logical Structure
Logical Structure in a PDF Document

8

144 Acrobat Core API Overview

and a drawing. The PDSEdit methods provide the ability to represent this logical
structure.

FIGURE 8.1 Structure in a Document

Other motivations behind PDF structure are:

● Accessibility for the sight-impaired to PDF documents. Readability of a document
is considerably enhanced if cues are provided indicating the beginning and end of
paragraphs or other natural groupings that the sighted take for granted. Structure
information can indicate what is part of the content and what can be ignored. It can
describe in words what a diagram shows.

● Metadata (data about the data), which is useful for purposes such as:
– Tracking history to indicate document revisions
– Tracking intellectual property

● Associating private data embedded in a PDF document with its content.

● Reflow of text and graphics.

The following sections explain how logical structure is provided.

Logical Structure in a PDF Document

PDF logical structure is layered on top of a document’s page contents using a special
markup language. HTML and XML use a similar layout for logical structure: text
enclosed in a hierarchy of tags. In HTML, each component is wrapped with a set of

asdflkjljasldfjljlajsdfljljlajsdlfjlja;sjdf;j;lj�
asdlfkjljasdflkjl;jasdlfjljasldjfljlasjdfljljadsf�
alkjasdflkjljasdfljljasldfjljlasjdfljljalsdjfljlasdf�
asdflkjljasdflkjlajsdljlajsdflkjlkjasdfljljasdf�
�
asdfljasdfjlkjasdfljl;kjwoiulkajdlknlvaoijsd�
lkasdflk;joiwlknbnsdoinowoinoinodinoisiolkclkjsf�
lkasdlknboijasldfnlkansduojsdflnalsnfoiusdn�
sdfoiulknaslnvaoinolnfdoisadfjlkasdfljljasdlfkjljas�
asdfoioasfd�
asdoioiuasdf�
�
sdfoijosdfjoijoasdifjoijojsaofdjoj

asdlfkjqwoeinblknalskdfjlkajsdflkjl�
asdflkjlasdflkjasdf�
�
asdflkjljasdflkjlkjasdlfkj�
asdflkjljasdflkjlajsdflkjaslkdj

Article

P

Drawing

P

Acrobat Core API Overview 145

PDSEdit—Creating and Editing Logical Structure
Logical Structure in a PDF Document

8

tags that define its structure. For example, the text of a top-level header begins with a
<h1> tag and ends with a </h1> tag. PDF provides similar constructs with its msarked
content operators.

In fact, HTML logical structure can be preserved in a PDF document. The Web
Capture feature introduced in Acrobat 4.0 allows converting HTML to PDF. Such PDF
may optionally contain structure information from the HTML data. Acrobat 4.0 can
generate bookmarks from this structure data.

The Structure Tree

Logical structure is independent of, though related to, the page content (that is, the
actual marks on the page made by the marking operators).

In a PDF document, logical structure is represented by a tree of elements called a
structure tree. There are pointers from the logical structure to the page contents, and
vice versa. The structure tree provides additional capability to navigate, search, and
extract data from PDF documents. By accessing a PDF document via its structure
tree, for instance, you can obtain logically ordered content independently of the
drawing order of the page contents.

Navigating a PDF Document

PDSEdit methods allow navigation of a document according to its structure.
Bookmarks made from structure can go to an individual paragraph or a whole section,
rather than just to a point on a page. PDSEdit also allows searching within structure
elemens, for example searching for a word within elements of a certain type, such as
headings. It can be used to move around a document, to analyze its content, and to
traverse its hierarchical structure.

Extracting Data From a PDF Document

The PDSEdit API allows you to extract portions of pages according to their context,
such as all of the headings or tables. The extracted data can be used in different
ways, such as summarizing document information, importing the data into another
document, or creating a new PDF document.

Adding Structure Data To a PDF Document

Authoring applications create documents that can be converted to PDF. When the
document is converted to PDF and viewed, Acrobat does not automatically add
structure to the document.

You can add structural information to any PDF file with the PDSEdit API. Once a file
has logical structure, PDSEdit allows you to use it.

PDSEdit—Creating and Editing Logical Structure
PDSEdit Classes

8

146 Acrobat Core API Overview

Using pdfmark to Add Structure Data to PDF

Authoring applications may add structure pdfmarks to the PostScript language code
generated when a document is printed. When the Acrobat Distiller application creates
a PDF file from such PostScript code, it generates structure information in the PDF file
from the pdfmarks. This approach requires the authoring application to add structure
pdfmarks to the PostScript code it generates, or for some other application to
generate the pdfmarks. See the pdfmark Reference for more information.

PDSEdit Classes

PDSEdit is organized around a set of classes representing structure components.

PDSTreeRoot

All logical structure information is in the structure tree, and the PDSTreeRoot is its
root. There is at most one PDSTreeRoot in each document. PDSTreeRoot methods
include:

PDSElement

PDSElement is the basic building block of the structure tree. It represents PDF
structural elements, which are nodes in a tree, defining a PDF document’s logical
structure. PDSElement methods include:

PDSAttrObj

A PDSAttrObj represents a structure attribute object, which is a Cos dictionary or
stream describing attributes associated with a PDSElement. The attribute’s data may
be application-specific, suiting the application that adds or extracts logical structure
information. An attribute object can have a revision number to indicate whether other

PDSTreeRootCreateClassMap Creates a PDSClassMap in a structure tree
root. .

PDSTreeRootCreateRoleMap Creates and sets a PDSRoleMap of a tree root.

PDSTreeRootGetKid Gets the child at an array index in a structure
tree root.

PDSElementAddAttrObj Associates an attribute object with an element at the
element’s current revision value.

PDSElementGetClass Gets the class name of an element.

Acrobat Core API Overview 147

PDSEdit—Creating and Editing Logical Structure
PDSEdit Classes

8

applications have modified either the associated element or the element’s contents
since the application created or modified the element. PDSAttrObj methods include:

PDSMC

Portions of a page’s contents may be wrapped with marked content operators. A
PDSMC object represents this marked content. A tag and an optional property list may
be associated with a PDSMC. PDSMC is identical to the PDFEdit class PDEContainer.
PDSMCs may be nested. The PDSMC object has one method:

PDSOBJR

An object reference (OBJR) is a reference to a PDF object. A PDSOBJR object
references an entire Cos dictionary or stream. The PDSOBJR object has one method:

PDSClassMap

The PDSClassMap (or class map) associates class names with a set of attribute
objects. A structural element may have a list of names identifying the classes to which
it belongs. Associated attributes are shared by all structural elements belonging to a
given class. There is only one class map per document, associated with the
PDSTreeRoot. PDSClassMap methods include:

PDSRoleMap

Each structure element must have a structure type. The definition of such types is
application-specific. In addition, PDF 1.3 defines a standard set of structure types for
logical structure in PDF documents. The role map (PDSRoleMap) maps

PDSAttrObjCreate Creates a new attribute object.

PDSAttrObjCreateFromStream Creates an attribute object from a Cos stream.

PDSMCGetParent Gets the parent element of the specified marked content.

PDSOBJGetParent Gets the parent element of the specified marked content.

PDSClassMapAddAttrObj Adds an attribute object to a PDSClassMap.

PDSClassMapGetAttrObj Gets the attribute object associated with a class
name.

PDSClassMapRemoveClass Removes a class from a PDSClassMap.

PDSEdit—Creating and Editing Logical Structure
Relationship of PDSEdit and PDFEdit

8

148 Acrobat Core API Overview

application-specific element types to the standard element types that have a similar
function. There is only one PDSRoleMap per document, associated with the
PDSTreeRoot.

Relationship of PDSEdit and PDFEdit

A PDSMC object represents marked content in a page’s contents stream. Specifically,
it represents the content that is bracketed by BMC/EMC or BDC/EMC marked content
operators.

In the PDFEdit API, PDEContainer objects are also defined as the content delimited
by BMC/EMC or BDC/EMC operators.

This means that PDSMC and PDEContainer objects are identical and may be freely
cast back and forth. You can use the PDFEdit API to create PDEContainer objects,
then cast and use them as PDSMC objects.

Using the PDSEdit API: Examining Structure

Structure Tree Root

The starting point for access to PDF structure is the PDSTreeRoot, the structure tree
root.

You can obtain a PDDoc’s PDSTreeRoot by calling PDDocGetStructTreeRoot.
The return value indicates whether the document has any structure at all. A document
has structure if and only if it has a structure tree root and, hence, a structure tree.

The structure tree root may contain a role map, which can help you identify elements
that serve common uses in the structure. You should call PDSTreeRootGetRoleMap
to get the tree root’s role map.

The structure tree root may also hold a class map, which associates sets of attributes
with elements in the structure tree. You can get the class map with the
PDSTreeRootGetClassMap method.

Structure Elements

The actual structure elements or PDSElements of a document are grouped into
subtrees that are attached to the structure tree root. Each subtree’s root is itself a
PDSElement to which other PDSElements may be attached.

Call PDSTreeRootGetNumKids to get the number of elements attached to the tree
root. To obtain each of these elements, use the PDSTreeRootGetKid method.

This example:

Acrobat Core API Overview 149

PDSEdit—Creating and Editing Logical Structure
Using the PDSEdit API: Examining Structure

8

● Gets the structure tree root

● Checks if the tree root has children

● Gets the last child

PDSTreeRoot treeRoot;
if (!PDDocGetStructTreeRoot(pdDoc,&treeRoot))

return; /* no structure tree */
ASInt32 numKids;
if ((numKids = PDSTreeRootGetNumKids(treeRoot)) == 0)

return; /* no kids */
PDSElement listElement;
/* get last kid /*
PDSTreeRootGetKid (treeRoot, numKids - 1, &listElement);

Traversing Elements in a Subtree

A PDSElement may have other PDSElements attached to it to form a subtree.

PDSElementGetKid is perhaps the most important access method in PDSEdit. A
structural element—unlike the structure tree root—can have several different kinds of
children:

● Another element (PDSElement)

● Marked content (PDSMC)

● A reference to an entire PDF object (PDSOBJR)

To allow for this, PDSElementGetKid returns a parameter that indicates the child’s
type.

If the returned child is a StructElem or PDSOBJR, the child is stored in the
parameter cosObjKid; if the return value is PDSMC, the child is stored in the
parameter pointerKid. This method optionally provides the page on which an
object or marked content child is located.

Suppose you want to traverse the entire structure tree, looking for an element or a set
of elements that satisfy some search criteria. The PDSTreeRootGetNumKids and
PDSTreeRootGetKid methods allow it to get the elements in the root of the
structure tree. You can then use PDSElementGetNumKids and
PDSElementGetKid to traverse the children of each element it encounters. Since
the structure is a tree, it lends itself to recursive handling.

If a child is a PDSElement, it may have children of its own, which you can examine as
indicated above. Given a PDSElement, you can use PDSElement class methods to
determine the type (also called its tag name), title, and attributes.

If the child is a PDSOBJR, it can be a reference to a Cos dictionary or Cos stream
object on a page. For instance, the object referenced may be an XObject representing
an image. Handling of object references in the structure tree typically is application-
specific.

PDSEdit—Creating and Editing Logical Structure
Using the PDSEdit API: Examining Structure

8

150 Acrobat Core API Overview

If the child is a marked content element, you can use PDFEdit methods to examine it.
For example, it can see what text the marked content element contains or copy the
content to another document.

NOTE: A marked content object is referred to as type PDSMC in the PDSEdit API, and
this is actually a synonym for the PDFEdit class PDEContainer. Be sure to
cast objects appropriately and observe the conventions for acquiring and
releasing PDFEdit objects.

For more information, see Chapter 7, “PDFEdit—Creating and Editing Page Content.”

The example below:

● Gets the children of an element

● Looks for a marked content element

● Gets the marked content

In this example, the element contains a list of other elements as children, and marked
content may be attached to these children.

/* Get the number of kids*/
ASInt32 listLength = PDSElementGetNumKids(listElement);
if (!listLength)

return; /* no kids */
/* Extract information from each kid */
ASInt32 i; for (i = 0; i < listLength; i++) {

CosObj cosObjKid, cosObjKid1;
PDSMC mcKid;
ASAtom kidType = PDSElementGetKid(listElement, i, &cosObjKid,

(void**)&mcKid, NULL);
if (kidType != ASAtomFromString("StructElem"))

continue; /* Not a structure element */
/* Look at first kid of structure element */
kidType = PDSElementGetKid((PDSElement)cosObjKid,0, &cosObjKid1,

(void**)&mcKid, NULL);
if (kidType != ASAtomFromString("MC"))
 continue; /* Not an MC */
/* Got the MC. Get its content. */
PDEContainer pdeContainer = (PDEContainer)mcKid;
PDEContent markedContent = PDEContainerGetContent(pdeContainer);
/* Process the marked content */
...

}

Object Attributes

An element may have attributes representing application-specific information.
Attributes are Cos dictionaries or Cos streams. You can use
PDSElementGetNumAttrObjs and PDSElementGetAttrObj to iterate through
the attribute objects attached to an element. You can filter these attribute objects
according to their revision number (as mentioned in “PDSEdit Classes” on page 146)

Acrobat Core API Overview 151

PDSEdit—Creating and Editing Logical Structure
Using the PDSEdit API: Examining Structure

8

by comparing the returned revision number from PDSElementGetAttrObj with the
revision number of the element returned by PDSElementGetRevision.

Once you have an attribute object, you may examine the object using standard Cos-
level methods. Note that each attribute object may contain zero or more attributes.
The attributes of an element are the union of the attributes given by all the attribute
objects.

Other Object Characteristics

In addition to attributes, an object can have other characteristics associated with it,
such as a title or ID. Use PDSElement accessor functions such as
PDSElementGetTitle to get this information.

Element Types and the Role Map

A structure element is represented by a Cos dictionary. In this dictionary, the Type key
always has the value StructElem. There also is a required Subtype key, and this key’s
value indicates what kind of structure element it has. PDSElementGetType returns
an element’s type.

Although a plug-in is free to define whatever element types it wishes, PDF defines a
standard list of element types. The role map associates a user-defined element type
with one of the standard types. There is only one role map in a PDF document, as
previously noted in “PDSRoleMap” on page 147.

Given an element’s type, you can consult the structure tree root’s role map via
PDSRoleMapDoesMap and PDSRoleMapGetDirectMap to find any standard roles
assigned to an element of this type. For example, you can find out whether an
element is some sort of section or table element in a document. A plug-in can use a
well-made role map to help make sense of a document.

Classes and the Class Map

A set of attributes may be associated with a class, and an element may belong to one
or more classes. If an element belongs to a class, it has all the attributes associated
with the class. The class map contains this information. There is only one class map
in a PDF document, as previously noted in “PDSClassMap” on page 147.

Use PDSElementGetNumClasses to get the number of classes an element belongs
to, and call PDSElementGetClass to obtain each class to which the element
belongs. Then you can call PDSClassMapGetNumAttrObjs to get the number of
attributes associated with the class and PDSClassMapGetAttrObj to obtain each
attribute in the class.

PDSEdit—Creating and Editing Logical Structure
Using the PDSEdit API: Creating Structure

8

152 Acrobat Core API Overview

Using the PDSEdit API: Creating Structure

Structure Tree Root

Before adding structure to a PDF document, you must first create a structure tree root
if the PDDoc doesn’t already have one. To do this, call PDDocGetStructTreeRoot
to determine if the PDDoc has a structure tree root. Call
PDDocCreateStructTreeRoot to create one.

To add structure elements to the tree root, use PDSTreeRootInsertKid.

Structure Elements

Creating structure using PDSEdit is mainly a process of creating elements with
PDSElementCreate, connecting them using PDSElementInsertKid, and
attaching the resulting subtrees to the structure tree root using
PDSTreeRootInsertKid. You can also construct the tree by adding PDSElements
to the tree root, then adding children to these PDSElements. Or you can do a
combination of these.

Create a structural element by calling PDSElementCreate. You must set its type
with PDSElementSetType before doing anything else with it. You may optionally set
an element’s ID, title, and alternate text representation with the respective methods,
PDSElementSetID, PDSElementSetTitle, and PDSElementSetAlt.

The PDSClassMapAddAttrObj method adds an attribute object to an element.
PDSElementAddClass adds a class to an element.

The example below:

● Creates a PDDoc’s structure tree root if one doesn’t exist

● Adds a structure element to it

PDSTreeRoot treeRoot;
if (!PDDocGetStructTreeRoot(pdDoc, &treeRoot))
PDDocCreateStructTreeRoot(pdDoc, &treeRoot);
PDSElement listElement;
PDSElementCreate(pdDoc, &listElement);
PDSElementSetType(listElement, ASAtomFromString("L"));
/* list element */
#define TEXT_LIST "Text element list"

PDSElementSetTitle(listElement,(const ASUns8*)TEXT_LIST,
strlen(TEXT_LIST));

PDSTreeRootInsertKid(treeRoot, listElement,
PDSTreeRootGetNumKids(treeRoot));

Acrobat Core API Overview 153

PDSEdit—Creating and Editing Logical Structure
Using the PDSEdit API: Creating Structure

8

Adding Marked Content to an Element

Use PDFEdit methods to create or obtain marked content to add to a structural
element. You can then cast a PDEContainer object to PDSMC to use it with the
PDSEdit API. It can add marked content to a structure element with
PDSElementInsertMCAsKid.

You can add a reference to marked content to only one structure element. A PDSMC
can have only one parent, because of the implementation: marked content points to
its parent. If you need to refer to marked content in more than one place, it can refer to
the structure element that has the PDSMC as a child rather than referring directly to the
PDSMC.

This example:

● Creates a marked content container

● Adds a text element

● Casts the container as a PDSMC

● Adds the container to a structure element

The example sets the container tag to "LI" so that it is the same as the subtype of
the element containing the marked content. This allows using the New Bookmarks
from Structure... feature introduced with Acrobat 4.0.

PDPage pdPage;
pdPage = PDDocAcquirePage(pdDoc, thisPage);
CosObj pageCos = PDPageGetCosObj(pdPage);
PDEContainer pdeContainer = PDEContainerCreate(ASAtomFromString("LI"),

NULL, false);
PDEContent textContent = PDEContentCreate();
PDEContentAddElem(textContent, k, PDEBeforeFirst, pdeElement);
/* pdeElement is some text element obtained earlier */
PDEContainerSetContent(pdeContainer, textContent);
/* Create structure element; put container in that element as an MC. */

PDSElement listItemElement;
PDSElementCreate(pdDoc, &listItemElement);
#define TEXT_ELEMENT "A text element"
PDSElementSetType(listItemElement, ASAtomFromString("LI"));
/* list item */
PDSElementSetTitle(listItemElement, (const ASUns8*)TEXT_ELEMENT,

strlen(TEXT_ELEMENT));
/* Put marked content into element */
PDSElementInsertMCAsKid(listItemElement,pageCos,(PDSMC)pdeContainer, 0);
PDPageRelease(pdPage);

Adding an Object Reference to an Element

You can add a PDF object reference to an element with
PDSElementInsertOBJAsKid.

PDSEdit—Creating and Editing Logical Structure
Using the PDSEdit API: Creating Structure

8

154 Acrobat Core API Overview

The object reference can be added to only one structure element. A PDSOBJR can
have only one parent, because of the implementation: an object points to its parent. If
you need to refer to an object in more than one place, you should refer to the structure
element that has the PDSOBJR as a child, rather than referring directly to the
PDSOBJR.

This example adds a PDSOBJR to a structure element.

PDSElement XObjectElement;
PDSElementCreate(pdDoc, &XObjectElement);
PDSElementSetType(XObjectElement, ASAtomFromString("LI"));
/* Insert the reference to the CosObj obj we obtained somewhere else */
PDPage pdPage;
pdPage = PDDocAcquirePage(pdDoc, thisPage);
CosObj pageCos = PDPageGetCosObj(pdPage);
/* Add the object reference */
PDSElementInsertOBJAsKid(XObjectElement, pageCos, obj, 0);
PDPageRelease(pdPage);

Class Map

You can create a class map in the structure tree root with
PDSTreeRootCreateClassMap, which provides the class map created. You can get
an existing class map in a structure tree with PDSTreeRootGetClassMap. There is
only one class map in a PDF document.

To add an attribute for a class to the class map, use PDSClassMapAddAttrObj. If
the class does not already exist in the class map, it is created and the attribute added
to it. PDSClassMapRemoveClass removes a given class from the class map.
PDSClassMapRemoveAttrObj removes an attribute from a given class in the class
map.

Role Map

PDSTreeRootCreateRoleMap creates a role map in a structure tree and provides
the newly-created role map. PDSTreeRootGetRoleMap obtains an existing role
map. A PDF document has only one role map.

To specify that a user-defined element type has the role of a standard element type,
call PDSRoleMapCopy. For more information, see the section entitled “Marked PDF”
in the document, PDF: Changes From Version 1.3 to 1.4.

Acrobat Core API Overview 155

9 Cos Layer

The Cos layer provides access to the low-level object types and file structure used in
PDF files. PDF documents are trees of Cos objects. Cos objects represent document
components such as bookmarks, pages, fonts, and annotations, as described in
Section 3.6, “Document Structure,” in the PDF Reference.

Unlike using the AV and PD layer methods, using Cos layer methods improperlycould
result in an invalid PDF file. Therefore, you should not use Cos methods unless
necessary, for example to add private data to portions of a PDF file that cannot be
accessed in other ways.

This chapter describes the Cos object types, data structures, and methods. See the
Acrobat Core API Reference for detailed information on each method. See Section
3.4, “File Structure,” and Section 3.6, “Document Structure,” in the PDF Reference, for
details on file structure and Cos objects. The Acrobat Plug-In Tutorial also includes a
chapter on using Cos object methods.

Cos Objects: Direct and Indirect

PDF files contain several types of Cos objects: booleans, numbers, strings, names,
arrays, dictionaries, and streams, plus a special null object.

Your plug-in can create objects of any of these types either as direct objects or
indirect objects; the choice is specified as a parameter to the method that creates the
object. For details on direct and indirect objects, see Section 3.2.9, “Indirect Objects,”
in the PDF Reference.

When a direct object is created, the object itself is returned. As a result, a direct
object can only be attached to one other Cos object at a time; it cannot, for example,
be shared by two different dictionaries.

When an indirect object is created, something equivalent to a pointer to the object is
returned. As a result, an indirect object can be attached to multiple places in a PDF
file simultaneously; it can, for example, be shared by two different dictionaries.

Attaching a Cos object to another is referred to as putting it into a container object.
Core API methods that put objects into container objects raise an exception if the
object to be put is a direct object that already is contained in another object.

Direct booleans, integers, fixed numbers, and names need not be destroyed when
they are no longer needed. Other object types (and indirect objects of these types)
should be destroyed when they are no longer needed.

Cos Layer
File structure

9

156 Acrobat Core API Overview

File structure

A PDF file consists of four sections:

● A one-line header specifying the PDF version.

● A body, which is a sequence of objects representing a PDF document.

● A cross-reference table containing information allowing access to indirect objects
in the file.

● A trailer containing information on certain special objects in the file.

There is one entry in the cross-reference table for each indirect object in a file; the
entry specifies the byte offset of the object from the beginning of the file. When a file
is opened, if Acrobat determines that the offsets are incorrect (indicating that the file
has been damaged in some manner), it attempts to rebuild the cross-reference table
as described in Appendix C.1 in the PDF Reference, second edition, version 1.3.

Multiple files may be open simultaneously. Each open file is represented by a
document pointer, and all indirect objects must be associated with a document.
However, objects belonging to one document cannot be stored in objects in another
document. The Cos layer uses ASStm objects to access a file’s contents.

Cos Objects in the Core API

In the Acrobat core API, there are two defined objects:

● CosDoc, which represents an entire PDF file.

● CosObj, which represents all the individual object types. There are various
methods to create the different types of Cos objects, as well as getting and setting
their values.

Each CosObj can be specified as being one of the other supported types:
CosArray, CosBoolean, CosDict, CosFixed, CosInteger, CosName,
CosNull, CosStream, and CosString.

The Cos layer provides methods to create and modify objects of each of the
supported types, as well as methods to read and write objects to and from a file.
Additional utility methods include those to get the root node of the tree of objects
representing a PDF document, and the info dictionary for a PDF document.

Acrobat Core API Overview 157

Cos Layer
CosDoc

9

CosDoc

A CosDoc object is the Cos layer representation of an entire PDF file. See
Appendix B for an overview of PDF document structure. See Section 3.6.1,
”Document Catalog,” in the PDF Reference, for a description of the catalog dictionary.

CosObj

A CosObj is a general object in a PDF file, which may be of any Cos object type.

The Cos layer provides several methods that are not specific to any particular object.
Several methods are available to manipulate a Cos object and include:

CosArray

Cos arrays are one-dimensional collections of objects accessed by a numeric index.
Array indexes are zero based. An array’s elements may be any combination of the
Cos data types.

The CosArray methods include:

CosDocClose Closes a Cos document.

CosDocCreate Creates an empty Cos document.

CosDocGetRoot Gets a document’s root Cos object, the catalog
dictionary

CosDocOpenWithParams Opens a Cos document.

CosDocSaveToFile Sets a single element in an array.

CosObjCopy Copies a CosObj from one document to another (or the
same document).

CosObjGetDoc Gets the CosDoc containing the object (indirect or non-
scalar objects only).

CosObjGetType Gets an object’s type.

CosObjIsIndirect Tests whether an object is indirect. See Section 3.2.9 in
the PDF Reference for details on indirect objects.

CosArrayGet Gets a single element from an array.

Cos Layer
CosBoolean

9

158 Acrobat Core API Overview

CosBoolean

Cos boolean objects can have a value of true or false. The CosBoolean methods
include:

CosDict

A Cos dictionary is an associative table whose elements are pairs of objects:

● The first element of a pair is the key, which is always a name object, a sequence of
characters beginning with the forward slash (/) character.

● The second element is the Cos object representing the value.

See Section 3.2.6 in the PDF Reference for details.

The CosDict methods include

CosFixed

Fixed numbers may only be in decimal format. See Section 3.2.2 in the PDF
Reference, for details. The CosFixed methods include:

CosArrayInsert Inserts an element into an array.

CosArrayPut Sets a single element in an array.

CosNewArray Creates an array.

CosBooleanValue Gets the value of the specified boolean object.

CosNewBoolean Creates a new boolean object associated with the
specified document and having the specified value.

CosDictGet Gets the value of a dictionary key.

CosDictPut Sets the value of a dictionary key.

CosDictRemove Removes a key-value pair from a dictionary.

CosNewDict Creates a dictionary.

CosFixedValue Gets the value of the specified fixed number object.

Acrobat Core API Overview 159

Cos Layer
CosInteger

9

CosInteger

Integers may be specified by signed or unsigned constants. See Section 3.2.2 in the
PDF Reference, for details. CosInteger methods include:

CosName

A name is a sequence of non-white space characters. In code, a name is preceded by
the forward slash (/) character indicating that it is a string literal, for example:/AName.

See Section 3.2.4 in the PDF Reference, for details. The CosName methods include:

CosNull

There is only one NULL object, which is used to fill empty or uninitialized positions in
arrays or dictionaries. See Section 3.2.8 in the PDF Reference for details.

CosNewNull is a method that gets a NULL Cos object.

CosStream

A stream is a sequence of characters that can be read a portion at a time. Streams
are used for objects with large amounts of data, such as images, page content, or
private data a plug-in creates. A stream consists of these elements, which are listed in
their relative order in the stream object, starting at the beginning.

CosNewFixed Creates a new fixed number object associated with the
document, having the specified value.

CosIntegerValue Gets the integer value of the specified number object.

CosNewInteger Creates a new integer object associated with the
document, having the specified value.

CosNameValue Gets the value of the specified name object.

CosNewName Creates a new name object associated with the document,
having the specified value.

Cos Layer
CosString

9

160 Acrobat Core API Overview

See Section 3.2.7 in the PDF Reference, for a description of the stream object.
CosStream methods include:

CosString

A string is a sequences of characters, enclosed in parentheses. See Section 3.2.3 in
the PDF Reference for details. CosString methods include:

Encryption/Decryption

The Cos layer provides methods to encrypt and decrypt data in arbitrary memory
blocks. The encryption and decryption uses Acrobat’s built-in algorithm (RC4 from
RSA Data Security, Inc.) and a key that can be specified. Methods include:

NOTE: These methods are not available in the Adobe PDF Library.

CosNewStream Creates a new Cos stream, using data from an existing
ASStm.

CosStreamLength Gets a stream’s length.

CosStreamOpenStm Creates a new, non-seekable ASStm for reading data from a
Cos stream.

CosStreamPos Gets the byte offset of the start of a Cos stream’s data in the
PDF file.

CosNewString Creates and returns a new Cos string object.

CosStringValue Gets the value of Cos string object, and the string’s length.

CosDecryptData Decrypts data in a buffer using the specified encryption key.

CosEncryptData Encrypts data in a buffer using the specified encryption key.

Acrobat Core API Overview 161

10 Handlers

Plug-ins can add new types of tools, annotations, actions, file systems, and so on,
thereby expanding the number of object types that Acrobat supports. To accomplish
this, plug-ins provide a collection of callback routines called handlers. Handlers
perform the necessary functions for the objects, such as creating and destroy them,
drawing, and handling mouse clicks, keyboard events, and other events as
appropriate for their objects.

NOTE: These types of handlers are distinct from exception handlers (see Chapter 12,
“Handling Errors”).

To add a new handler, a plug-in must write the callback routines, create the
appropriate data structure containing the callbacks and other data, and pass the
structure to Acrobat using the appropriate API method. Subsequently, Acrobat
automatically calls the correct callbacks when it encounters an object of the type
handled by the handler.

This chapter describes several types of handlers and shows the which data
structures, callbacks and methods are involved in creating them.

It is possible to “subclass” existing handlers or to create entirely new types of
handlers. For example, a plug-in could subclass the built-in text annotation handler by
adding the ability to hide annotations. To accomplish this, the plug-in would :

● Obtain the built-in text annotation handler structure (using
AVAppGetAnnotHandlerByName).

● Copy the structure before modifying it (not modifying the original).

● Replace the handler’s Draw callback with one that calls the built-in Draw callback
(obtained from the structure) if annotations are visible, or simply return without
drawing anything if annotations are hidden.

● Register the new handler (using AVAppRegisterAnnotHandler with a new
type).

If a handler requires more data than provided in the predefined structures described
in this section, you can append additional data to the predefined structures. To do this,
create a new structure type with the predefined structure as its first member and the
additional data as subsequent members. Before passing the expanded structure to
the Acrobat method, cast the structure to the predefined structure type. Upon return
of the structure from Acrobat, re-cast the structure to its expanded type to access the
appended data.

Each handler data structure contains a size field, which specifies the structure’s
size. This field provides future compatibility. Different versions of the structure have
different sizes, allowing Acrobat to determine which version your plug-in was written
to use.

Handlers
Action Handlers

10

162 Acrobat Core API Overview

NOTE: Regardless of whether your plug-in adds data to the predefined structures, it
always must pass the size of the predefined structure (rather than the size of its
expanded structure) in the size field.

Action Handlers

Support for new action types can be added by defining and registering an action
handler. The Acrobat Weblink plug-in uses this ability to add support for URL links.

To add a new action type, a plug-in must provide a set of callbacks, specify them in
the AVActionHandlerProcs structure, and call AVAppRegisterActionHandler
to register them (see the Acrobat Core API Reference for details). The callbacks
include ones that:

● Perform the action, such as setting the view to that specified by the destination
(AVActionPerformProc).

● Allow the user to set the action’s properties (necessary only if any properties can
be set). (AVActionDoPropertiesProc).

● Initialize an action’s dictionary with default values.
(AVActionFillActionDictProc).

● Display a string containing brief instructions for the action.
(AVActionGetInstructionsProc).

● Display various text strings to be used in dialogs.
(AVActionGetButtonTextProc, AVActionGetStringOneTextProc,
AVActionGetStringTwoTextProc).

● Copy the action (AVActionCopyProc).

For details on each of the callbacks in an action handler, see the description of
AVAppRegisterActionHandler in the Acrobat Core API Reference.

Annotation Handlers

Support for new annotation types in the Acrobat viewer can be added by defining and
registering an annotation handler. The Acrobat Movie plug-in, for example, uses this
to support video annotations.

To add a new annotation type, a plug-in must provide a set of callbacks, specify them
in the AVAnnotHandler structure, and register them with
AVAppRegisterAnnotHandler (see theAcrobat Core API Reference for details).
The callbacks include ones that:

● Draw the annotation (AVAnnotHandlerDrawProc).

● Handle mouse clicks in the annotation (AVAnnotHandlerDoClickProc).

Acrobat Core API Overview 163

Handlers
AVCommand Handlers

10

● Control the cursor shape when the cursor is over the annotation
(AVAnnotHandlerAdjustCursorProc).

● Determine whether or not a specified point is within the annotation
(AVAnnotHandlerPtInAnnotViewBBoxProc).

● Return the rectangle bounding the region the annotation occupies
(AVAnnotHandlerGetAnnotViewBBoxProc).

● Highlight (unhighlight) the annotation when it is added to (removed from) the
selection (AVAnnotHandlerNotifyAnnotAddedToSelectionProc,
AVAnnotHandlerNotifyAnnotRemovedFromSelectionProc).

● Return the annotation’s subtype (AVAnnotHandlerGetTypeProc).

● Get the annotation’s layer (AVAnnotHandlerGetLayerProc). See “Page View
Layers” on page 48 for related information.

AVCommand Handlers

Introduced in Acrobat 5.0, an AVCommand represents an action that the user can
perform on the current document or the current selection in the current document.
AVCommands are exposed to Acrobat through AVCommand handlers. A plug-in can
add new command types in the Acrobat viewer by defining and registering an
AVCommand handler. Commands can be executed interactively, programmatically, or
through batch processing.

Creating an AVCommand Handler

AVCommand handlers consist of a series of callbacks contained in the
AVCommandHandlerRec structure (see AVExpt.h).

To implement a command handler with minimal functionality, a plug-in should

● Initialize an instance of the AVCommandHandlerRec structure.
– Allocate memory for the structure.
– Fill in the size field.
– Implement the Work, Cancel, and Reset callbacks.

● Register the AVCommandHandlerRec structure with Acrobat using
AVAppRegisterCommandHandler.

This is shown in the following example:

static AVCommandHandlerRec gAVCmdHandler;
const char *kCmdName = "MinimalCommand";
static ACCB1 AVCommandStatus ACCB2 DoWorkImpl (AVCommand cmd)
{

// Minimal AVCommand. Does nothing.
return kAVCommandDone;

}

Handlers
AVCommand Handlers

10

164 Acrobat Core API Overview

void InitializeCommandHandler()
{

memset (&gAVCmdHandler, 0, sizeof(AVCommandHandlerRec));
gAVCmdHandler.size = sizeof(AVCommandHandlerRec);
gAVCmdHandler.Work = ASCallbackCreateProto (AVCommandWorkProc,

DoWorkImpl);
AVAppRegisterCommandHandler (ASAtomFromString(kCmdName),

&gAVCmdHandler);
}

This procedure implements a valid AVCommand that plug-in clients can access
through the AVCommand methods. For details on how clients can invoke the
AVCommands, see “Invoking AVCommands Programmatically” on page 72.

Exposing AVCommands to the Batch Framework

Acrobat builds the list of commands that users see in the Batch Sequences and Batch
Edit Sequence dialogs from an internal list of AVCommands referred to as the global
command list.

Adding a Handler to the Global Command List

To expose a command to the batch framework, the AVCommand handler first must add
an instance of the command to this global list using the
AVAppRegisterGlobalCommand method.

AVCommand cmd = AVCommandNew (ASAtomFromString(kCmdName));
AVAppRegisterGlobalCommand (cmd);

Although this step can be performed at any time once the command handler has been
registered, handlers commonly register commands from within the
AVCommandRegisterCommandsProc callback (of the AVCommandHandlerRec
structure), for example,

static ACCB1 void ACCB2 RegisterCommandsImpl (ASAtom handlerName)
{

ASAtom cmdName = ASAtomFromString(kCmdName);
AVCommand cmd;
if (NULL == AVAppFindGlobalCommandByName (cmdName)) {

cmd = AVCommandNew (cmdName);
if (cmd)

AVAppRegisterGlobalCommand (cmd);
}

}

Supporting Properties

When building a list of batchable commands, Acrobat iterates through its internal
command list, querying each command for the "CanBatch" and "GroupTitle"
properties. To be exposed through the batch framework user interface, a command
must support these properties (that is, return true and a valid ASText object,
respectively, when Acrobat queries them).

Acrobat Core API Overview 165

Handlers
AVCommand Handlers

10

To accomplish this, the AVCommand handler must implement the GetProps callback
of the AVCommandHandlerRec structure.

If an AVCommand supports these properties, Acrobat queries a number of additional
properties as the user interacts with the batch framework. Of these additional
properties, only two are required: “Title” and "Generic Title". A command must provide
the title strings that will be displayed in the Batch Sequences and Batch Edit Sequence
dialogs. See the Acrobat Core API Reference for a complete description of the
various AVCommand properties.

const char *kCmdTitle = "Command Title";
const char *kGroupTitle = "Group Title";
const char *kCmdGenericTitle = "Generic Title";

static ACCB1 AVCommandStatus ACCB2 GetPropsImpl (AVCommand cmd,
ASCab props)

{
ASBool doItAll = false;
ASText text;
if (ASCabNumEntries(props) == 0)

doItAll = true;
if (doItAll || ASCabKnown (props, kAVCommandKeyGroupTitle))
{

// Create a new text object and insert it into the ASCab
text = ASTextNew();
ASTextSetEncoded (text, kGroupTitle, (
ASHostEncoding)PDGetHostEncoding());
ASCabPutText(props, kAVCommandKeyGroupTitle, text);

}
if (doItAll || ASCabKnown (props, kAVCommandKeyCanBatch))

ASCabPutBool (props, kAVCommandKeyCanBatch, true);
if (doItAll || ASCabKnown (props, kAVCommandKeyGenericTitle))
{

// Create a new text object and insert it into the ASCab
text = ASTextNew();
ASTextSetEncoded (text, kCmdGenericTitle,

(ASHostEncoding)PDGetHostEncoding());
ASCabPutText (props, kAVCommandKeyGenericTitle, text);

}
if (doItAll || ASCabKnown (props, kAVCommandKeyTitle))
{

// Create a new text object and insert it into the ASCab
text = ASTextNew();
ASTextSetEncoded (text, kCmdTitle,

(ASHostEncoding)PDGetHostEncoding());
ASCabPutText (props, kAVCommandKeyTitle, text);

}
}

At this point, the user will be able to use the command in batch sequences.

Handlers
File Format Conversion Handlers

10

166 Acrobat Core API Overview

File Format Conversion Handlers

With Acrobat 5.0 and higher, a plug-in can add file conversion handlers to Acrobat
(but not Acrobat Reader) for converting:

● To PDF from another file format (import)

● From PDF to another file format (export)

To add a new file conversion handler, a plug-in must provide a set of callbacks,
specify them in the AVConversionToPDFHandler or
AVConversionFromPDFHandler structures, and call
AVAppRegisterToPDFHandler or AVAppRegisterFromPDFHandler to register
them (see the Acrobat Core API Reference for details). It must specify the types of
files it can convert and whether it can perform synchronous conversion (required for
the handler to be accessible from the batch framework). Upon registration, the
conversion handlers are automatically added to the respective Open... and Save As...
dialogs.

The callbacks include ones that:

● Provide default settings for the conversion
(AVConversionDefaultSettingsProc).

● Provide conversion parameter information (AVConversionParamDescProc).

● Display a settings dialog (AVConversionSettingsDialogProc).

● Convert a non-PDF file to or from a PDF file
(AVConversionConvertToPDFProc or
AVConversionConvertFromPDFProc).

The Acrobat 5.0 SDK includes the FileConversion plug-in example that converts
files to PDF from other file formats.

File Specification Handlers

A file specification handler converts between a PDFileSpec and an ASPathName.
Each file specification handler works only with a single file system, which the handler
specifies.

To create a new file specification handler, a plug-in or application must provide
callbacks that:

● Convert an ASPathName to a PDFileSpec. It is called by
PDFileSpecNewFromASPath.

● Convert a PDFileSpec to an ASPathName.

See the description of PDRegisterFileSpecHandlerByName in the Acrobat Core
API Reference, for details on each of the callbacks in a file specification handler.

Acrobat Core API Overview 167

Handlers
Security Handlers

10

Security Handlers

The issue of document security is complex enough that it is discussed in a separate
chapter. For details on security handlers, see Chapter 11, “Document Security.”

Selection Servers

A selection server allows the selection of a certain type of data, such as annotations,
text, or graphics. Plug-ins can create new selection servers to allow the selection of
types of data not already supported. To add a new selection server, a plug-in must
provide a set of callbacks, specify them in the AVDocSelectionServer data
structure, and register them using AVDocRegisterSelectionServer.

The callbacks include ones that:

● Return the selection type serviced by the handler
(AVDocSelectionGetTypeProc).

● Highlight or unhighlight a selection
(AVDocSelectionHighlightSelectionProc).

● Handle key presses (AVDocSelectionKeyDownProc).

● Delete the selection (AVDocSelectionDeleteProc).

● Cut the selection to the clipboard (AVDocSelectionCutProc).

● Copy the selection to the clipboard (AVDocSelectionCopyProc).

● Paste the selection from the clipboard (AVDocSelectionPasteProc).

● Select all data of the type they handle (AVDocSelectionSelectAllProc).

● Enumerate the items in the current selection
(AVDocSelectionEnumSelectionProc).

● Scroll the view so that the current selection is available
(AVDocSelectionShowSelectionProc).

● Determine whether or not the “Properties” menu item is enabled
(AVDocSelectionCanPropertiesProc).

● Display the properties dialog for the selection, if the selection type has a properties
dialog (AVDocSelectionPropertiesProc).

For a complete list of the callbacks in a selection server, see the description of
AVDocSelectionServer in the Acrobat Core API Reference. The
SelectionServer sample plug-in in the Acrobat SDK shows an example of a
selection server.

Handlers
Tools

10

168 Acrobat Core API Overview

Tools

To add a new tool, a plug-in must provide a set of callbacks, specify them in the
AVTool data structure, and register them using AVAppRegisterTool..

The callbacks include ones that:

● Activate the tool; that is, do whatever is necessary when the tool is selected
(ActivateProcType)

● Deactivate the tool; that is, do whatever is necessary when another tool is selected
(DeactivateProcType)

● Handle mouse clicks (DoClickProcType).

● Handle key presses (DoKeyDownProcType).

● Control the shape of the cursor (AdjustCursorProcType).

● Return the tool’s name (GetTypeProcType).

● Indicate whether the tool stays active after it is used once
(IsPersistentProcType).

● Determine whether the tool is enabled. For example, if a tool is meant to be used
within documents, but there are no documents open, it probably makes no sense
to activate the tool (AVComputeEnabledProc).

See the description of AVTool in the Acrobat Core API Reference for a complete list
of the callbacks.

Window Handlers

When a plug-in creates a window, it can register the window, so that it behaves like
other windows in the Acrobat viewer, for example, when the viewer is minimized or
hidden. For each window that a plug-in provides, a window handler must be provided.

NOTE: Window handlers are used only in the Macintosh version of the Acrobat
viewers. Windows and UNIX versions of the viewers instead use the platform’s
native window handling mechanisms.

To define a window handler, a plug-in must provide a set of callbacks, specify them in
an AVWindowHandler structure, and pass the structure to AVWindowNew or
AVWindowNewFromPlatformThing.The window handler’s callbacks are
automatically called by the Acrobat viewer. Default behavior is used for any missing
callbacks.

The callbacks include ones that:

● Handle mouse clicks in the window (AVWindowMouseDownProc).

● Handle keystrokes in the window (AVWindowKeyDownProc).

● Draw the window’s contents (AVWindowDrawProc).

Acrobat Core API Overview 169

Handlers
File Systems

10

● Permit or prevent closing of the window (AVWindowWillCloseProc).

● Clean up after the window has been closed (AVWindowDidCloseProc).

● Do anything that must be done when the window is activated or deactivated
(AVWindowDidActivateProc, AVWindowWillDeactivateProc).

● Do anything that must be done when the window becomes responsible for
handling keystrokes or loses responsibility for handling keystrokes
(AVWindowDidBecomeKeyProc, AVWindowWillResignKeyProc).

● Permit or constrain window size changes (AVWindowWillBeResizedProc).

● Determine whether the Cut, Copy, Paste, Clear, SelectAll, and Undo menu items
are enabled (AVWindowCanPerformEditOpProc).

● Perform Cut, Copy, Paste, Clear, SelectAll, and Undo operations
(AVWindowPerformEditOpProc).

● Control the shape of the cursor when it is within the window
(AVWindowAdjustCursorProc).

For a complete list of callbacks in a window handler, see the description of
AVWindowHandler in the Acrobat Core API Reference.

File Systems

Plug-ins can add new file systems to Acrobat, to access files on a device that cannot
be accessed as a local hard disk, such as a socket or a modem line.

To add a new file system, a plug-in must provide a set of callbacks and specify them
in the ASFileSysRec structure. This structure is passed as a parameter to calls that
require a file system. Unlike some of the other handlers in this chapters,there is no
explicit registration.

The callbacks include ones that:

● Open (ASFileSysOpenProc) or close (ASFileSysCloseProc) a file.

● Flush a file’s buffered data to disk (ASFileSysFlushProc).

● Get or set the current position in a file (ASFileSysSetPosProc,
ASFileSysGetPosProc) .

● Get or set a file’s logical size (ASFileSysGetEofProc or
ASFileSysSetEofProc) .

● Read data from a file (ASFileSysReadProc) .

● Write data to a file (ASFileSysWriteProc) .

● Delete a file (ASFileSysRemoveProc) .

● Rename a file (ASFileSysRenameProc) .

● Get a file’s name (ASFileSysGetNameProc)

Handlers
Progress Monitors

10

170 Acrobat Core API Overview

● Determine the amount of free space on a volume
(ASFileSysGetStorageFreeSpaceProc).

● Get a file system’s name (ASFileSysGetFileSysNameProc) .

● Test whether two files are the same (ASFileSysIsSameFileProc) .

● Get a pathname to a temporary file (ASFileSysGetTempPathNameProc) .

● Copy a pathname (not the underlying file) (ASFileSysCopyPathNameProc) .

● Convert between device-independent and device-dependent pathnames
(ASFileSysDiPathFromPathProc) .

● Dispose of a pathname (not the underlying file)
(ASFileSysDisposePathNameProc) .

● Flush data on a volume (ASFileSysFlushVolumeProc) .

● Handle asynchronous I/O (ASFileSysAsyncReadProc,
ASFileSysAsyncWriteProc) .

● Handle multiple read requests (ASFileSysMReadRequestProc) .

For details on each of the callbacks in a file system, see the description of
ASFileSysRec in the Acrobat Core API Reference.

Progress Monitors

Progress monitors provide feedback to a user on the progress of a time-consuming
operation. Some potentially time-consuming methods in the core API require a
progress monitor as a parameter. The Acrobat viewer has a default progress monitor,
which generally is sufficient for plug-ins to use. The built-in progress monitor can be
obtained using AVAppGetDocProgressMonitor.

Plug-ins can use the default progress monitor or implement their own by providing a
set of callbacks, specifying them in the ASProgressMonitorRec data structure,
and passing a pointer to the structure to the methods that require a progress monitor.
(There is no explicit registration method.)

NOTE: Prior to Acrobat 5.0, the ProgressMonitorRec structure was used.

Plug-ins can also use a progress monitor (either the built-in one or their own) to
display progress when they carry out a time-consuming task. To do this, they simply
call the progress monitor’s callbacks directly.

NOTE: Plug-ins that perform time-consuming tasks should, in general, allow the user
to cancel them (see AVAppGetCancelProc).

The progress monitor callbacks include ones that :

● Initialize the progress monitor and display it with a current value of zero
(PMBeginOperationProc).

Acrobat Core API Overview 171

Handlers
Transition Handlers

10

● Draw a full progress monitor, then remove the progress monitor from the display
(PMEndOperationProc).

● Set the value that corresponds to a full progress monitor display
(PMSetDurationProc).

● Set the current value of the progress monitor and update the display
(PMSetCurrValueProc).

● Get the progress monitor’s maximum value (PMGetDurationProc).

● Get the progress monitor’s current value (PMGetCurrValueProc).

For details, see the description of ASProgressMonitorRec in the Acrobat Core
API Reference.

Transition Handlers

Transitions allow effects such as dissolves or wipe-downs when displaying a new
page. New transition types can be added by defining and registering a transition
handler.

To add a new transition, a plug-in must provide a set of callbacks, specify them in the
AVTransHandler data structure, and register them using
AVAppRegisterTransHandler. The callbacks include ones that:

● Get the transition type (AVTransHandlerGetTypeProc).

● Perform the transition; that is, do whatever is necessary to change to the next page
with this transition style) (AVTransHandlerExecuteProc).

● Fill in the transition dictionary in the PDF file
(AVTransHandlerInitTransDictProc,
AVTransHandlerCompleteTransDictProc).

● Provide information for the user interface that sets the attributes of the transition
(AVTransHandlerGetUINameProc).

For a complete list of the callbacks in a transition handler, see the description of
AVTransHandler in the Acrobat Core API Reference.

Handlers
Transition Handlers

10

172 Acrobat Core API Overview

Acrobat Core API Overview 173

11 Document Security

This chapter describes the document security features of the Acrobat core API. It
discusses:

● Encryption and decryption of PDF files so that only authorized users can read
them.

● Security handlers, which are the primary mechanism for controlling access to a
file. They contain code that performs user authorization and sets permissions.
Acrobat has a built-in security handler; plug-ins can alter Acrobat’s security system
by adding new security handlers.

● New security features in Acrobat 5.0.

Encryption and Decryption

Encryption is controlled by an encryption dictionary in the PDF file. The Acrobat core
API uses RC4 (a proprietary algorithm provided by RSA Data Security, Inc.) to
encrypt document data, and a standard (proprietary) method to encrypt, decrypt, and
verify user passwords to determine whether or not a user is authorized to open a
document. See Section 3.5, “Encryption,” in the PDF Reference for more information
on the encryption used in PDF files. See also the section on “Encryption” in PDF:
Changes From Version 1.3 to 1.4 for updated information.

Each stream or string object in a PDF file is individually encrypted. This level of
encryption improves performance because objects can be individually decrypted as
needed rather than decrypting an entire file. All objects—except for the encryption
dictionary (which contains the security handler’s private data)—are encrypted using
the RC4 algorithm Adobe licenses from RSA Data Security, Inc. Plug-ins may not
substitute another encryption scheme for RC4.

A plug-in that implements a security handler is responsible for encrypting the values it
places into the encryption dictionary, and it may use any encryption scheme. If the
security handler does not encrypt the values it places into the encryption dictionary,
the values are in plain text.

The core API provides two Cos layer methods to encrypt and decrypt data using the
RC4 algorithm from RSA Data Security, Inc: CosEncryptData and
CosDecryptData. Security handlers may use these methods to encrypt data they
want to put into the PDF file’s encryption dictionary and decrypt data when it is read
from the dictionary. Security handlers may instead choose to ignore these methods
and use their own encryption algorithms.

Document Security
Security Handlers

11

174 Acrobat Core API Overview

Security Handlers

The code that performs user authorization and sets permissions is known as a
security handler. The core API has one built-in security handler. This security handler
supports two passwords:

● A user password that allows a user to open and read a protected document with
whatever permissions the owner chose

● An owner password that allows a document’s owner to also change the
permissions granted to users

Plug-ins can use the core API’s built-in security handler, or they can write their own
security handlers to perform user authorization in other ways (for example, by the
presence of a specific hardware key or file, or by reading a magnetic card reader). A
security handler provided by a plug-in can use the Acrobat viewer’s built-in dialog
boxes for entering passwords and for changing permissions.

Security handlers are responsible for:

● Setting permissions on a file.

● Authorizing access to a file.

● Setting up a file’s encryption and decryption keys.

● Maintaining the encryption dictionary of the PDF file containing the document.

Security handlers are used when:

● A document is opened — The security handler must determine whether a user is
authorized to open the file and set up the decryption key that is used to decrypt the
PDF file. See “Opening a File” on page 177.

● A document is saved — The security handler must set up the encryption key and
write whatever extra security-related information it wants into the PDF file’s
encryption dictionary. See “Saving a File” on page 179.

● A user tries to change a document’s security settings — The security handler must
determine whether or not the user is permitted to do the operation. See “Setting a
Document’s Security” on page 180.

A document may have zero, one, or two security handlers associated with it. A
document has zero security handlers if no security is used on the file. When security
is applied to a file, or the user selects a different security handler for a secured file, the
newly-chosen security handler is not put in place immediately. Instead this new
security handler is simply associated with the document; it is a pending security
handler until the document is saved.

The new security handler is not put in place immediately because it is responsible for
decrypting the contents of the document’s encryption dictionary, and that dictionary is
re-encrypted in the correct format for the new security handler only when the
document is saved. As a result, a document may have both a current and a new
security handler associated with it.

Acrobat Core API Overview 175

Document Security
Security Handlers

11

NOTE: On Acrobat 5.0, the Save or Save As... menu item can be used to save the file.
On Acrobat versions prior to 5.0, the file must be saved with Save As… for
reasons described in “Saving a File” on page 179.

A security handler has two names: one that is placed in each PDF file that is saved by
the handler (for example, ADBE_Crypt), and another name that Acrobat can use in
any user interface items in which the security handler appears (for example, Acrobat
Developer Technologies default encryption). This is similar to the two-name scheme
used for menu items: a language-independent name that the code can refer to
regardless of the user interface language, and another name that appears in the user
interface. See Chapter 2, “Registering and Using Plug-in Prefixes,” in the Acrobat
Development Overview for details on plug-in naming conventions.

Adding a Security Handler

Acrobat has a built-in security handler. Plug-ins can add other security handlers by:

● Writing a set of callback routines to perform security-related functions.

● Specifying the callbacks in a PDCryptHandlerRec structure. See the description
of PDCryptHandlerRec in the Acrobat Core API Reference for details on each of
the security handler callbacks.

● Registering the handler by passing the structure to
PDRegisterCryptHandlerEx

NOTE: PDRegisterCryptHandlerEx was introduced with Acrobat 5.0, and is the
same as PDRegisterCryptHandler but accepts an extra parameter for
storing client data. There are a number of callbacks in the
PDCryptHandlerRec structure which have similar names except for the
addition of “Ex”. In general, the Ex calls are newer and should be preferred but
the older ones are still allowed for for compatibility. This chapter generally
refers to only one of the routines, for convenience.

Data Used By Security Handlers

The following sections refer to three types of data used by security handlers:

● Authorization data is the data the security handler needs to determine the user’s
authorization level for a particular file (for example, not authorized to open the file,
authorized to access the file with user permissions, authorized to access the file
with owner permissions). Passwords are a common type of authorization data.

● Security data is whatever internal data the security handler wants to keep around.
It includes security info, and perhaps internal state variables, internal flags, seed
values, and so on.

● Security info is a subset of the security data. Specifically, it is a collection of flags
that contains the information that Acrobat uses to display the current permissions
to the user. This information includes permissions and the user’s authorization
level (user or owner).

Document Security
Security Handlers

11

176 Acrobat Core API Overview

Security Handler Callbacks

A security handler must provide callbacks that:

● Determine whether a user is authorized to open a particular file and what
permissions the user has once the file is open (PDCryptAuthorizeExProc).

● Create and fill an authorization data structure, using whatever user interface is
needed to obtain the data (displaying a dialog into which the user can type a
password, for example) (PDCryptGetAuthDataExProc).

● Create, fill, and verify a security data structure
(PDCryptNewSecurityDataProc).

● Extract the security information from the security data structure
(PDCryptGetSecurityInfoProc) (optional)

● Allow the user to request different security settings, usually by displaying a dialog
box. (PDCryptDisplaySecurityDataProc)

● Set up the encryption key used to encrypt the file
(PDCryptNewCryptDataProc).

● Fill (PDCryptFillEncryptDictProc) or read the PDF file’s encryption
dictionary.

● Display the current document’s permissions (required with the Acrobat 5.0
callbacks PDCryptAuthorizeExProc and PDCryptGetAuthDataExProc).

New Security Features in Acrobat 5.0

With Acrobat 5.0 and higher, a finer granularity of permissions has been predefined
for the objects supported by a PDF document. Plug-ins can call the
PDDocPermRequest method to request whether a particular operation is authorized
to be performed on a specified object in a document. For details, see “Querying
PDDoc Permissions” on page 91. Earlier Acrobat versions supported a much more
limited set of permissions (an OR of the PDPerms values listed in the Acrobat Core
API Reference) that a plug-in could request using the PDDocGetPermissions
method.

To support the PDDocPermRequest method, two new callback methods
PDCryptAuthorizeExProc and PDCryptGetAuthDataExProc also were
introduced with Acrobat 5.0. These callbacks replace the PDCryptAuthorizeProc
and PDCryptGetAuthDataProc callbacks, respectively.

NOTE: Acrobat 5.0 continues to support security handlers written with the
PDCryptAuthorizeProc and PDCryptGetAuthDataProc callback
methods. If a security handler does not support the newer methods, Acrobat
calls the older ones and interprets the results.

Acrobat 5.0 also includes optional security handling for batch operations (operations
on one or more files). There are a number of new callbacks (indicated by
PDCryptBatch...) that a security handler should provide to support batch

Acrobat Core API Overview 177

Document Security
Security Handlers

11

processing. These callbacks are part of a PDCryptBatchHandler structure. The
PDCryptHandlerRec structure contains a new member CryptBatchHandler,
which points to this structure. To support batch processing, a security handler should
provide a non-NULL value for CryptBatchHandler, and implement the batch
callbacks

Prior to Acrobat 5.0, the maximum length of the encryption key that Acrobat accepted
was 40 bits. Acrobat version 5.0 or higher accommodates an encryption key length of
128 bits. These length limitations are imposed to comply with export restrictions.

Opening a File

The core API has several methods for opening files. PDDocOpen, or PDDocOpenEx
(introduced with Acrobat 5.0 and containing an additional parameter) is always used
to open PDF files, even when a plug-in calls AV layer methods such as
AVDocOpenFromFileWithParams. As a result, the sequence of operations is
largely the same regardless of whether the document is being opened from the
PD layer or from the AV layer. The difference is that if you call PDDocOpen directly,
you must pass your own authorization procedure (PDAuthProc), while AV layer
methods always use Acrobat’s built-in authorization procedure . (See “Acrobat’s Built-
in Authorization Procedure” on page 178.)

The authorization procedure must implement the authorization strategy, such as
giving the user three chances to enter a password. The PDAuthProc is not part of a
security handler, but it must call the security handler’s methods to authorize the user
(for example, to get the password from the user and to check whether or not the
password is valid).

The security-related steps to opening a file are:

1. Acrobat looks for an Encrypt key in the PDF document’s trailer, to determine
whether or not the document is encrypted. If there is no Encrypt key, Acrobat
opens the document immediately.

2. If there is an Encrypt key, its value is an encryption dictionary. Acrobat gets the
value of the Filter key in the dictionary to determine which security handler was
used when the file was saved. It looks in the list of registered security handlers
(which contains Acrobat’s built-in handler and any handlers that plug-ins or
applications have registered) for one whose name matches the name found in the
PDF file.

3. If Acrobat finds no match, indicating that the necessary handler could not be
found, it does not open the document.

If it finds a matching security handler, it calls that handler’s
PDCryptNewSecurityDataProc callback to extract and decrypt information
from the PDF file’s encryption dictionary.

4. Acrobat calls the security handler’s authorize callback
(PDCryptAuthorizeExProc) with NULL authorization data, and with the

Document Security
Security Handlers

11

178 Acrobat Core API Overview

requested permissions set to PDPermReqOprOpen or pdPermOpen (requesting
that the user be allowed to open the file). This allows support for authorization
schemes that do not need authorization data. For details, see “Acrobat’s Built-in
Authorization Procedure” on page 178.

5. If authorization succeeds, the handler’s authorization callback must return the
PDPermReqStatus (when the callback is PDCryptAuthorizeExProc) or
pdPermOpen (when the callback is PDCryptAuthorizeProc) indicating that the
user is permitted to open the file.

6. If authorization fails, the authorization procedure passed in the call to open the
PDDoc is called.

NOTE: This authorization procedure is not the same as the security handler’s
authorize callback, although it must, at some point, call the security
handler’s callback. (All AV layer file opening methods use Acrobat’s built-in
authorization procedure.)

7. If authorization still fails, the file is not opened.

8. If authorization succeeds, Acrobat calls the security handler’s
PDCryptNewCryptDataProc callback to create the decryption key that is used
to decrypt the file. The PDCryptNewCryptDataProc callback can construct the
decryption key in any way it chooses, but generally performs some calculation
based on the contents of the security data structure filled previously by the
handler’s PDCryptNewSecurityDataProc callback.

Acrobat’s Built-in Authorization Procedure

Acrobat’s built-in authorization procedure works as follows:

1. It calls the security handler’s authorize callback (which is either
PDCryptAuthorizeExProc, introduced with Acrobat 5.0, or the older
PDCryptAuthorizeProc) to request that the user be allowed to open the file. It
passes NULL authorization data, to handle the case where no authorization data is
needed. It also passes:
– PDPermReqObjDoc and PDPermReqOprOpen when calling

PDCryptAuthorizeExProc.
– pdPermOpen when calling PDCryptAuthorizeProc.

2. If the authorize callback returns true, the file is opened. Otherwise, the
authorization procedure executes the following steps up to three times, to give the
user three chances to enter a password, or whatever authorization the security
handler uses.
– It calls the security handler’s get authorization data callback

(PDCryptGetAuthDataExProc or the older PDCryptGetAuthDataProc).
This callback should obtain the authorization data using whatever user interface

Acrobat Core API Overview 179

Document Security
Security Handlers

11

(a dialog box to obtain a password, for instance) or other means necessary, and
then create and fill the authorization data structure.

– It calls the security handler’s authorize callback, passing the authorization data
returned by the get authorization data callback. If authorization succeeds, the
authorize callback returns the permissions granted to the user, and the
authorization procedure returns.

NOTE: The security handler’s authorize callback should use only the authorization
data passed to it from the get authorization data callback. It should not, for
example, display a dialog box itself to obtain a password from the user.

The authorize callback can access the encrypted PDF document, allowing it to
encrypt the authorization data using a mechanism that depends on the document’s
contents. By doing this, someone who knows one document’s password cannot easily
find out which other documents use the same password. The authorize callback can
return permissions that depend on the password as well as the permissions specified
when encryption was set up. This allows, for example, more rights to be granted to
someone who knows a document’s owner password than to someone who knows the
document’s user password.

Saving a File

When saving a file, it is important to keep in mind that:

● When a user selects document encryption for the first time or has selected a
different security handler for an already encrypted file, the newly-selected handler
does not take effect until the document is saved.

● To be allowed to save a file, the user must have PDPermReqOprModify (available
with Acrobat 5.0 and higher) or either pdPermEdit or pdPermEditNotes
permission.

● On Acrobat 5.0 and above, File->Save As and File->Save both force a complete
encrypted copy of the file to be written.In Acrobat versions prior to 5.0, users must
use Save As… to save a file in an encrypted form for the first time, or when a
different security handler was selected for an already encrypted file. Save did an
incremental update, so only the last changes made to the file would be encrypted,
and the remainder of the document would still be usable by anyone (or would not
be able to be decrypted by the newly-selected security handler).

When a secured file is saved:

● If the file is being saved in an encrypted form for the first time or if a different
security handler is selected, Acrobat calls the new security handler’s
PDCryptNewSecurityDataProc callback. This action creates a new copy of the
new security handler’s security data structure.

● If the file is being saved in an encrypted form for the first time or if a different
security handler is selected, Acrobat calls the new security handler’s
PDCryptUpdateSecurityDataProc callback. This presents whatever user
interface the security handler has for enabling the user to set permissions.

Document Security
Implementation Examples

11

180 Acrobat Core API Overview

● Acrobat calls the new security handler’s PDCryptFillEncryptDictProc
callback to encrypt and write into the PDF file’s encryption dictionary whatever
data the security handler wants to save in the PDF file.

● Acrobat writes out the encrypted file.

● Acrobat sets the new security handler as the document’s current security handler.

Setting a Document’s Security

Acrobat calls the new security handler’s PDCryptUpdateSecurityDataProc
callback to present whatever user interface the security handler has for allowing the
user to set security, passwords, and so forth.

When security is set, the security handler obtains the permissions and authorization
data (such as passwords) to be used for the file. The settings do not take effect until
the file is saved, as described in the previous item

NOTE: In Acrobat 5.0, users select File-> Document Security... to set security. On
Acrobat versions prior to 5.0, the user set security using the Security button in
the Save As... dialog.

Implementation Examples

This section describes the sequence of callbacks and how they would be used by a
plug-in that uses public-private key technology.

Saving a File With a New Encryption Dictionary

To save a file with a new encryption dictionary, the following callbacks in the
PDCryptHandlerRec are used:

1. PDCryptNewSecurityDataProc creates and initializes a security data
structure. It is called with encryptDict (a Cos object) set either to NULL or to a
valid encryption dictionary, in which case the fields of the encryption dictionary are
read and placed into the security data structure.

2. PDCryptUpdateSecurityDataProc gets the current security data structure by
calling the PDDocGetNewSecurityData method. It then makes a copy of the
structure with which to work. This new copy is freed if an error or cancel condition
is encountered. The user is requested to log in to their PKI infrastructure to access
the user’s keys and certificates.

If the security data structure was seeded with information from encryptDict, an
internal authorize procedure is called. This procedure decrypts and examines the

Acrobat Core API Overview 181

Document Security
Utility Methods

11

data fields in the security data structure copy that are set to indicate the user’s
permissions and, possibly, information relating to the document symmetric key.

A user interface is provided to enable your plug-in to specify a list of recipients for
the document. If all goes well, the secDataP argument to
PDCryptUpdateSecurityDataProc is set to the copy of the security data
structure, and the viewer frees the original security data structure.

3. PDCryptFillEncryptDictProc writes data from the security data structure
into the encryption dictionary. When the viewer is done with the security data
structure, it calls the PDCryptFreeSecurityDataProc.

Opening an Encrypted File

To open an encrypted file, the following callbacks in the PDCryptHandlerRec are
used:

1. PDCryptNewSecurityDataProc is called as described in the previous section.

2. PDCryptAuthorizeExProc is called and returns NULL since the authorization
permissions have not been determined. This callback should not present any user
interface.

3. PDCryptGetAuthDataExProc. The plug-in does not use the authorization data
structure, but instead only the security data structure. It calls an internal
authorization procedure that determines the authorization level of the logged-in
user. This authorization procedure is the same procedure as is called by
PDCryptUpdateSecurityDataProc in the previous section.

4. PDCryptAuthorizeEx or PDCryptAuthorize. The authorization permissions
have now been established (by the call to get the authorization data) and are
returned. The viewer will then open the file.

Utility Methods

These user interface utility methods are provided for the Acrobat viewer:

AVCryptGetPassword Displays the Acrobat viewer’s standard dialog box
that prompts a user to enter a password. Plug-ins
can use this method to obtain a user‘s password
when opening a file.

AVCryptDoStdSecurity Displays a security dialog to the user, allowing the
user to change the document’s permissions.

Document Security
Utility Methods

11

182 Acrobat Core API Overview

Acrobat Core API Overview 183

12 Handling Errors

Most Acrobat core API methods do not return error codes, but raise exceptions when
errors occur. Exceptions are handled by exception handlers. The Acrobat viewers
provide a default exception handler, but this handler is not able to back gracefully out
of an unfinished operation. Therefore, plug-ins should add their own exception
handlers to trap and handle various exceptions, typically performing some cleanup
(such as releasing memory) when an exception occurs. Your exception handler can
either absorb the exception or re-raise the exception to pass it along to the next
handler on the exception handler stack.

Exception Handlers

Plug-ins can use the DURING, HANDLER, and END_HANDLER macros to define
exception handlers. The code for which an exception handler is to be active appears
between the DURING and HANDLER macros, while the exception handler code
appears between the HANDLER and END_HANDLER macros. For example, the
following code declares an error handler that is active only during the call to
AVDocOpenFromFile:

DURING
 avd = AVDocOpenFromFile(asp, NULL, (char *)NULL);
HANDLER
 avd = NULL;
 errorCode = ERRORCODE;
 AVAlertNote("Error opening file");
END_HANDLER

If the method raises an exception, the handler code is executed; otherwise it is not
executed. In the example shown, the handler sets the value of two variables and
displays an error message to the user.

When an exception occurs, your handler can access the exception error code by
using the ERRORCODE macro. The value returned by the ERRORCODE macro does not
change until another exception is raised.

The exception error code contains the following information:

● Severity

● Exception system

● Error number

Handling Errors
Exception Handlers

12

184 Acrobat Core API Overview

Your exception handler can use all of this information to decide how to respond to the
exception.Your plug-in can extract information from an exception code with macros
listed in the following table:

TABLE 12.1 Exception handling macros

ERROR CODE Defined in Description

ErrGetSeverity AcroErr.h Gets the severity of the error where
severity is one of the following:
ErrNoError - No error
ErrWarning - Warning
ErrSilent - Don’t display a message
ErrSuppressable - Display a message
if the user has not suppressed errors
ErrAlways - Always display a message,
even if others are suppressed

ErrGetSystem AcroErr.h Gets the system that raised the exception,
where system is one of the values listed in
Table 12.2.

ErrGetCode
ErrGetSignedCode

AcroErr.h Gets the error number. Acrobat’s built-in
exceptions are defined in AcroErr.h.
Use ErrGetSignedCode if the platform
considers error codes to be signed.

ErrBuildCode AcroErr.h Builds an error code, given the severity,
system, and error number

RERAISE CorCalls.h Re-raises the most recently raised
exception and passes it to the next
exception handler in the stack.

TABLE 12.2 Exception system names

Name Description

ErrSysNone General error and out of memory error

ErrSysCos CosStore filters

ErrSysCosSyntax Cos syntax errors

ErrSysPDDoc PDDoc and family, Page tree, outlines

ErrSysPDPage PDPage and family, thumbs, annots

Acrobat Core API Overview 185

Handling Errors
Exception Handlers

12

The following code example illustrates an exception handler that simply determines
which system raised an exception and displays that information in a dialog box:

switch(ErrGetSystem(ERRORCODE))
{
 case ErrSysNone: strcpy(msg, "No memory");break;
 case ErrSysCos: strcpy(msg, "CosStore");break;
 case ErrSysCosSyntax: strcpy(msg, "Cos syntax");break;
 case ErrSysPDDoc: strcpy(msg, "PDDoc");break;

...
 default: strcpy(msg, "Unknown system");break;
}
AVAlertNote(msg);

ErrSysPDMetadata XAP Metadata

ErrSysPDModel Global PD model

ErrSysAcroView AcroView

ErrSysPage Page parsing and RIPing

ErrSysPDFEdit PDFEdit

ErrSysPDSEdit PDSEdit

ErrSysFontSvr Font server

ErrSysRaster Rasterizer

ErrSysASFile ASFile I/O

ErrSysXtn Errors registered by plug-ins are automatically assigned to
this error system

ErrSysXtnMgr Extension Manager

ErrSysMDSystem Platform-specific system errors

ErrSysMDApp Platform-specific application errors

TABLE 12.2 Exception system names

Name Description

Handling Errors
Raising Exceptions

12

186 Acrobat Core API Overview

Raising Exceptions

In addition to handling exceptions Acrobat raises, plug-ins can use ASRaise to raise
exceptions. Plug-ins can raise any of the exceptions that Acrobat has defined, or they
can raise their own exceptions.

NOTE: Your plug-in should use the ASRegisterErrorString method to define its
own exceptions.

Use the RERAISE macro (see Table 12.1) when you don’t want your exception
handler to handle an exception, but want to pass the exception to the next exception
handler on the stack.

NOTE: If code that calls ASRaise gets control as a result of a non-Acrobat event
(such as a drag and drop event on some platforms), ASRaise fails. There is no
Acrobat code in the stack to handle the exception.

Handling an Exception Later

You may have situations where there is some clean-up code that needs to be
executed regardless of whether an error was raised along the way. Here’s a way to
handle this:

ASInt32 err = 0;
...
DURING
 ...
HANDLER
 err = ERRORCODE;
END_HANDLER
/* free, clean up, etc. */
...
if (err) ASRaise(err);

Returning From an Exception Handler

To return from a method within a DURING...HANDLER block, don’t use a return
statement. Instead, use the following macros (defined in CorCalls.h):

● E_RETURN(x) returns the value x

● E_RTRN_VOID does not return a value

These macros remove stack entries added to the stack by the DURING macro. (They
must not be used outside a DURING/HANDLER block.) Using return instead would
cause the stack to be in an inconsistent state.

Acrobat Core API Overview 187

Handling Errors
Returning From an Exception Handler

12

The following code example illustrates the use of the E_RTRN_VOID macro (the error
handler in this example simply displays an alert dialog):

DURING
 pdDoc = AVDocGetPDDoc(avDoc);
 rootBm = PDDocGetBookmarkRoot(pdDoc);
 if(PDBookmarkIsValid(rootBm)){
 parentBm = PDBookmarkGetByTitle(rootBm, "Contents", 8, 1);
 if(PDBookmarkIsValid(parentBm)){
 pdAction = PDBookmarkGetAction(parentBm);
 if (!PDActionIsValid(pdAction))
 E_RTRN_VOID
 dest = PDActionGetDest(pdAction);
 if (!PDViewDestIsValid(dest))
 E_RTRN_VOID
 PDViewDestGetAttr(dest, &fit, &initRect, &zoom);
 pageNum = PDViewDestGetPageNumber(dest, pdDoc) + 2;
 } else {
 AVAlertNote("No Contents Bookmark");
 E_RTRN_VOID
 }
 } else {
 AVAlertNote("No Root Bookmark");
 E_RTRN_VOID
 }
HANDLER
 AVAlertNote("Exception raised");
 return;
END_HANDLER

The E_RETURN(x) macro must not call a function that might raise an exception. For
example:

E_RETURN(foo())

is dangerous, if there’s any possibility that foo could raise an exception. The reason is
that E_RETURN pops an exception frame off the stack before evaluating the
expression to be returned. If this evaluation raises an exception, it does not call your
handler. Instead it calls the next handler up the stack.

Therefore, if you need to call a function, it is best to do it this way:

result = foo();
E_RETURN(result);

This way, if foo raises an exception, your handler will be executed.

Handling Errors
API Methods That Raise Exceptions

12

188 Acrobat Core API Overview

API Methods That Raise Exceptions

The Acrobat Core API Reference specifies some of the exceptions that may be raised
by each method. However, it should not necessarily be considered a comprehensive
list.

There are several general rules in determining which exceptions may be raised by
methods:

● Methods that create new objects or otherwise allocate memory can generally raise
out-of-memory exceptions.

● Cos methods can generally raise exceptions if storage is exhausted or file access
fails.

● ASFile methods generally do not raise exceptions, unless otherwise specified.

● When in doubt, assume that a method can raise exceptions and surround it with a
DURING/HANDLER/END_HANDLER construct to handle any exceptions that may be
raised.

Exception Handler Caveats

Don’t Use goto In a DURING...HANDLER Block

Jumping outside a DURING … HANDLER block disrupts the stack frame, as in this bad
example:

DURING
 ...
 goto error;
HANDLER

END_HANDLER

error:

This is a bug: the top stack frame has not been popped, so the frame is incorrect.
Instead, the following makes sure the stack frame is set up correctly:

DURING
 ...
 ASRaise(myspecialerrorcode);
 ...
HANDLER
 if ERRORCODE == myspecialerrorcode
 goto error;
END_HANDLER

error:

Acrobat Core API Overview 189

Handling Errors
Exception Handler Caveats

12

Don’t Nest Exception Handlers In a Single Function

In general, don’t nest exception handlers within a single function. The exception
handling macros change the call stack, and nesting them can disrupt the stack.

Your plug-in can safely nest an exception handler if the nested handler is in another
function called inside the DURING … HANDLER block, as in the following example:

DURING
...
MyFunction();
...

HANDLER
...

END_HANDLER
...
void MyFunction(void) {

...
DURING

...
HANDLER

...
END_HANDLER
...

}

If you insist on nesting exception handlers in a single function, don’t return from the
inner exception handler (either through a call to return in a handler or E_RETURN from
body code). This would leave the exception stack out of sync with the call stack. Any
errors raised in body code surrounded by the outer exception handler will restore the
incorrect calling environment and lead to unpredictable results. For example:

{
DURING /* Places one frame on the exception stack */

pdoc = AVDocGetPDDoc(avdoc);
DURING /* Places a second frame on the stack */

rootBm = PDDocGetBookmarkRot(pdDoc);
if (!PDBookmarkIsValid(rootBm)){

E_RTRN_VOID
/*
Returning here messes up the exception stack
because two frames have been placed on the stack
and E_RTRN_VOID only clears one of them before
returning
*/
}

pdAction = PDBookMarkGetAction(parentBm);
HANDLER

AVAlertNote("Bad AVDoc");
return (1);
/*
Returning here messes up the exception stack

Handling Errors
Exception Handler Caveats

12

190 Acrobat Core API Overview

because there is still a frame on the stack from
the outer DURING macro and it will not be cleared
before the function returns
*/

END_HANDLER
HANDLER

AVAlertNote("Bad PDDoc");
END_HANDLER
}

Be Careful About Register Usage

The DURING and HANDLER macros use the standard C setjmp/longjmp
mechanism. The DURING macro calls setjmp. An exception results in a longjmp to
the context that was saved by the most recent setjmp. When a longjmp occurs, all
registers, including those containing variables the compiler optimized into register
variables, are restored to the values they held when the setjmp occurred.

As a result, the state of local variables that have been optimized into registers is
unpredictable when the exception handler is invoked. To avoid this situation, declare
all variables that are set in the main body of the code and used in the exception
handler or beyond (if the handler lets execution continue) as volatile. This ensures
that they are never optimized into register variables, but are always referenced from
memory.

NOTE: Memory access is generally substantially slower than register access, so
performance may be compromised if a variable is referenced frequently.
Therefore, plug-ins should only declare as volatile variables whose value is
needed in the exception handler or beyond.

When using volatile, be sure to place the keyword in the correct location, for
example:

volatile myStruct* p = 0;

declares the instance of the structure to be volatile, while

myStruct* volatile p = 0;

declares the pointer itself to be volatile. In general, the second form is the one to use.

Acrobat Core API Overview 191

13 Changes For This Revision

This document has been updated since its previous version to reflect new features
and APIs in Acrobat 5.0, and improved in other ways, as described in the following
sections.

New Features in Acrobat 5.0

The following new features are described in the sections noted:

● New security features, including new security handler features and new document
permissions. See Chapter 11, “Document Security” and “Querying PDDoc
Permissions” on page 91.

● Batch processing and AVCommand handlers. See “AVCommand Handlers” on
page 163.

● File conversion to and from PDF. See “File Format Conversion Handlers” on
page 166.

● Transparency, a new feature introduced in PDF 1.4. See “PDEExtGState” on
page 133 and “PDEXGroup” on page 140.

● Metadata features. See “Metadata” on page 86.

New Core API Objects

The following new objects have been added, to implement some of the features
mentioned above as well as other functions:

● “ASCab” on page 57

● “ASText” on page 62

● “AVCommand” on page 72

● “AVConversion” on page 75

● “AVSweetPea” on page 79

● “PDEPS” on page 138

● “PDESoftMask” on page 139

● “PDEXGroup” on page 140

● “PDSysEncoding” on page 141

Changes For This Revision
Other Changes in This Document

13

192 Acrobat Core API Overview

Other Changes in This Document

● Revised Acrobat Software Development Kit Documentation Roadmap

● Added links to method descriptions in the Acrobat Core API Reference.

● Updated references to the PDF Reference. They all refer to the correct sections in
the PDF Reference, second edition, version 1.3.

● Reorganized the presentation of much of the material, and added a Preface.

● Removed most references to the PDF Library. The PDF Library is a separate SDK
from the Acrobat SDK.

● New information on “Enumerating Page Objects” on page 116

● Added Appendix B, “Portable Document Format.”

Acrobat Core API Overview 193

A APPENDIX
Object Interrelationships

The following figures show how various object types can be obtained from other
object types. Use them to help you find your way among the objects in the Acrobat
core API.

FIGURE A.1 File I/O Object Interrelationships

ASFile

ASPathName

Device-independent
pathname

ASFileSys

ASGetDefaultFileSys

PDFileSpecGetFileSys

PDFileSpecGetCosObj

PDFileSpecFromCosObj

PDFileSpecGetDIPath

ASFileSysPathFromDIPath

PDFileSpecNewFromASPath

PDFileSpecAcquireASPath
ASFileSysCopyPath

ASFileSysOpenFile

AVDocOpenFromASFileWithParams
AVDocOpenFromFileWithParams
AVDocOpenFromFile

ASFileGetFileSys()

ASFileSysDIPathFromPath

ASFileAcquirePathName

PDDocGetFile

PDDocOpen

PDFileSpec

PDDoc

CosObj

AVDoc

Object InterrelationshipsA

194 Acrobat Core API Overview

FIGURE A.2 Document Object Interrelationships

PDDoc

PDDocCreate

AVDoc

AVWindow

CosDoc

AVDocGetPDDoc

AVDocOpenFromPDDocWithParams
AVDocOpenFromPDDoc

PDDocGetCosDoc

AVDocOpenFromFile
AVDocOpenFromFileWithParams
AVDocOpenFromASFileWithParams

AVDocGetPageView AVPageViewGetAVDocAVDocGetAVWindow

PDDocGetFile

PDDocOpen

AVPageView

ASFile &
ASFileSys

Acrobat Core API Overview 195

B Portable Document Format

This Appendix provides a brief overview of PDF and the PDF structures. For details,
see the PDF Reference.

Relationship of Acrobat and PDF Versions

The following table shows how Acrobat and PDF versions are linked.

Introduction To PDF

PDF is a means of representing text and graphics using the imaging model of the
PostScript language. It describes the imaging required to draw a page or a collection
of pages. A PDF file draws a page by placing “paint” on selected areas. Starting with
a blank page, the page is drawn by using various marking operators to place marks
on the page. Each new mark overlays any previous marks. Marks are painted figures
defined by letter shapes (text) regions defined by combinations of lines and curves
(line art), or sampled images (photographs or images). Unlike PostScript, a full
language that is programmable, PDF does not contain procedures, variables, and
control constructs. PDF uses a pre-defined set of high-level marking operators that
can describe pages.

PDF handles images through image compression filters such as JPEG for color and
grayscale images; CCITT Group 3 and Group 4, LZW, and Run Length compression
for monochrome images; and LZW compression for text and graphics.

Fonts for text are described by a font descriptor. The font descriptor includes the font
name, character metrics, and style information. This allows the accurate display of
any fonts used in the document that may be missing on the reader’s system.

TABLE B.1 PDF to Acrobat Version Compatibility

PDF Version Acrobat Version

1.0 2.0

1.1 2.1

1.2 3.0

1.3 4.0

1.4 5.0

Portable Document Format
PDF Objects

B

196 Acrobat Core API Overview

The following table shows the objects and structures of a PDF file.

FIGURE B.1 PDF File Structure

PDF Objects

The object types supported in PDF are similar to those supported by the PostScript
language. There are seven basic types: booleans, numbers, strings, names, arrays,
dictionaries, and streams, as well as a null object. Objects can be labeled and
referred to by an ID (indirect objects).

File Structure

The PDF file structure consists of four sections: header, body, cross-reference table
and a trailer. No line in a PDF file (except for those that are part of stream data) can
be longer than 255 characters, and a line is delimited by a carriage return and
linefeed, or a carriage return. The following table illustrates the structure of a PDF file.

Objects

File Structure

(Basic Objects: Booleans, Numbers, Strings,
Names, Arrays, Dictionaries, Streams, Filters)

(Header, Body, Cross-reference Tables, Trailer)

Document Structure
(Catalog, Pages Tree, Pages, Imagable Content,

Thumbnail, Annotation, Outline Tree, etc.)

Page Description

(PDF Operators
that describe
text, graphics,
and images)

Acrobat Core API Overview 197

Portable Document Format
File Structure

B

FIGURE B.2 File Structure of a PDF File (not updated)

The one-line header specifies the version number of the PDF specification used in the
file.

The body is a sequence of indirect objects (labeled objects) that describe the
document. The objects are the basic PDF Object types (numbers, strings,
dictionaries, etc.). The % symbol indicates a comment in the PDF file.

The cross-reference table contains information that enables random access to
indirect objects in the file. For each indirect object, there is a one-line entry in the table
that gives the location of the object in the file. To facilitate access to pages in a
multi-page document, the cross-reference table can be used to locate and directly
access pages and other objects in the document file.

The trailer includes the number of entries in the cross-reference table, a pointer to any
other cross-reference sections, a catalog object for the document, and an info
dictionary (optional) for the document.

The PDF file is read from back to front and the trailer information permits the quick
location of the cross-reference table, which in turn enables quick location of any
object in the document.

A PDF file can be updated without rewriting the entire contents of the file. This is done
by appending changes to the end of the file, while leaving the original contents intact.

NOTE: This may mean that a file with “deleted” elements will be larger than then
original file. When the PDF file is updated, any new or changed objects are

Header

Body

Cross-reference Table

Trailer

Portable Document Format
Document Structure

B

198 Acrobat Core API Overview

appended, an additional cross-reference table is added, and a new trailer is
inserted. An appended file structure is shown in the following figure.

FIGURE B.3 File Structure of PDF File (after updating)

Document Structure

A PDF file contains pages with text, graphics, and images, along with other
information such as thumbnails, text annotations, hypertext links, and bookmarks. It is
organized into a catalog of a page tree and bookmark (or outline) tree, along with the
pages, page contents and bookmark entries, as shown in the following figure.

Header

Original File Structure

Update 1

Update n

Original Body

Original
Cross-reference Table

Original Trailer

Body Update 1

Cross-reference Section 1

Body Update n

Cross-reference Section n

Updated Trailer n

Updated Trailer 1

Acrobat Core API Overview 199

Portable Document Format
Page Contents

B

FIGURE B.4 Document Structure

Page Contents

A PDF page contents is a sequence of graphic operators that generate marks that are
applied to the current page, overlaying any previously made marks. The following
table describes the four graphics objects.

TABLE B.2 Graphics objects

Object Description

Path An arbitrary shape made of straight lines, rectangles, and cubic
curves.

Text One or more character strings that can be placed anywhere on the
page and in any orientation.

Image A set of samples using a specified color model.

XObject A PDF object referenced by name. The three types of XObjects are:
● Image
● Form
● PostScript language form

Catalog

Pages
tree

Page

ThumbnailImageable
content

Annotations

Page Outline
entry

Outline
tree

Outline
entry

Portable Document Format
Page Contents

B

200 Acrobat Core API Overview

Acrobat Core API Overview 201

Index

A
"about" box and splash screen 48
Acrobat Support (AS) layer 57

ASAtom 57
ASCab 57
ASCallback 59
ASExtension 59
ASFile 60
ASFileSys 60
ASPathname 62
ASStm 62
ASText 62
configuration 64
errors 64
fixed-point math 65
HFT methods 66
memory allocation 67
platform-specific utilities 67

Acrobat Viewer (AV) layer 69
AVActionHandler 70
AVAlert 71
AVAnnotHandler 71
AVApp 71
AVCommand 72
AVConversion 75
AVCrypt 75
AVDoc 76
AVGrafSelect 76
AVMenu 76
AVMenubar 77
AVMenuItem 78
AVPageView 79
AVSweetPea 79
AVSys 80
AVTool 80
AVToolBar 80
AVToolButton 81
AVWindow 82

Acrobat viewer’s user interface 47

Acrobat viewers, controlling 51
action handlers 162
adding new object types 33
adjusting the cursor 45
Adobe Dialog Manager (ADM) 79
annotation handlers 162
annotation types, new 54
Apple events 46
applications, examples 51
AS layer 23
AV layer 22
AVCommand 163

B
batch processing 164

C
cabinets 57
callbacks 42
classes, PDFEdit 111
command handlers 163
complex types 27
controlling the Acrobat viewers 51
conversion handlers 166
converting file formats to and from PDF 75
coordinate systems 28, 48

device space 29, 30
machine port space 31
user space 28, 30

core API
handshaking and initialization 39
mechanics 35
objects 23
organization 22
types 26

core API organization
AS layer 23
AV layer 22

202 Acrobat Core API Overview

Index

Cos layer 23
PD layer 22
PDFEdit 22
PDSEdit 23
platform-specific methods 23

Cos layer 23, 155
CosArray 157
CosBoolean 158
CosDict 158
CosDoc 157
CosFixed 158
CosInteger 159
CosName 159
CosNull 159
CosObj 157
CosStream 159
CosString 160
encryption/decryption 160
file structure 156

Cos objects 28
creating HFTs 37
cross-platform dialog management 79

D
data types

complex 27
Cos 28
opaque 28
scalar 26
simple 27

DDE messages 46
DEBUG 42
decryption 173
device space 29, 30
device space, coordinates of 29
dictionary access 54
document security 54, 173

utility methods 181
drawing 48
drawing into another window 51

E
encoded text, specifying 62
encryption 173
encryption/decryption

Cos layer 160
enumeration 45
error handling 183, 191
errors, Acrobat Support (AS) layer methods 64
event handling 45
examples of applications and plug-ins 51
exception handlers 183
exception handling 32
exporting HFTs 40
extracting text 53

F
file specification handlers 166
file systems 60
fixed-point math 65

H
handlers 161

action 162
annotation handlers 162
command 163
conversion 166
file specification 166
file systems 169
progress monitors 170
security 167, 174
selection servers 167
tools 168
transition 171
window 168

handling errors 183, 191
adding new exceptions 186
passing an exception 186

handling events 45
adjust cursor 45
key presses 46
mouse clicks 45

Acrobat Core API Overview 203

Index

handling exceptions 32
handshaking 39
handshaking with plug-ins 39
help files 48
HFT 35, 66

creating 37
exporting 40
importing 40
replacing entries in 37
using 36

HFT servers 36
Host encoding 63
host function table (HFT) 35, 66

I
importing HFTs 40
indexed searching 52
info dictionary access 54
initialization of plug-ins 39
initialization, plug-in 39
initializing plug-ins 41
integrating with an Acrobat viewer 21
Interapplication Communication (IAC) 46
interapplication communication (IAC) 21
invoking AVCommands programmatically 72

K
key presses 46

L
language codes, setting 64
layers

Acrobat Support (AS) 57
Acrobat Viewer (AV) 69
Cos 155
Portable Document (PD) 85

logical structure 143

M
machine port space 28, 31

Macintosh utilities 67
mechanics of the core API 35
memory allocation 67
menus and menu items 47
message handling, adding 46
Metadata 86
method names, general format of 24
methods, replacing 37
mouse click processing 48
mouse clicks 45

N
new annotation types 54
notifications 44

O
object attributes 23
object names, conventions for 23
object types, adding new 33
opaque data types 23
opaque objects

objects, opaque 23
opaque types 28
organization of core API 22

P
page view layers 48
passing an exception 186
path name 62
PD layer 22
PDF files

private data in 33, 55
PDF format, converting to and from 75
PDFEdit 22, 109

classes 111
comparison with other core APIs 115
debuggin tools and techniques 126
dump methods 128
general methods 129
hit testing 117
matrix operations 119

204 Acrobat Core API Overview

Index

page creation 121
PDEClip 129
PDEColorSpace 129
PDEContainer 130
PDEContent 131
PDEDeviceNColors 132
PDEElement 132
PDEExtGState 133
PDEFont 134
PDEForm 135
PDEGroup 136
PDEImage 136
PDEObject 137
PDEPath 137
PDEPattern 137
PDEPlace 138
PDEShading 139
PDEText 139
PDEUnknown 140
PDEXObject 141
PDSysFont 141

PDFileSpec 93
PDModel layer 85
PDSEdit 23, 143

PDSAttrObj 146
PDSClassMap 147
PDSElement 146
PDSMC 147
PDSObjr 147, 154
PDSRoleMap 147
PDSTreeRoot 146

permissions, querying PDDoc 91
platform-specific utilities 67
plug-in initialization 39
plug-in naming conventions 46
plug-in prefixes 46
plug-ins 21

examples 51
initialization 41
reducing conflicts among 49
unloading 42

plug-ins, Reader-enabled 47
Portable Document (PD) layer 85

general methods 86

PDAction 88
PDAnnot 88
PDBead 89
PDBookmark 89
PDCharProc 90
PDDoc 91
PDFileSpec 93
PDForm 96
PDGraphic 97
PDImage 97
PDInlineImage 98
PDLinkAnnot 98
PDNameTree 99
PDNumTree 99
PDPage 99
PDPageLabel 100
PDPath 101
PDStyle 101
PDText 101
PDTextAnnot 102
PDTextSelect 102
PDThread 104
PDThumb 104
PDTrans 104
PDViewDestination 104
PDWord 105
PDWordFinder 106
PDXObject 107

private data in PDF files 33, 55
progress monitors 170

Q
quadrilaterals 32
querying PDDoc permissions 91

R
Reader-enabled plug-ins 47
rectangles 32
replacing entries in HFTs 37
replacing methods 37

Acrobat Core API Overview 205

Index

S
scalar types 26
searching, indexed 52
security 173

document 54
new features in Acrobat 5.0 176

security handlers 167, 174
callbacks 176

selection servers 167
simple types 27
splash screen 48
streams 62
structure, logical 143

T
tagged PDF 143
text, extraction 53
toolbar 48
transition handlers 171
translating between user and device space 30
transparency 133
types, core API 26

U
Unicode 63
UNIX utilities 67
unloading plug-ins 42
user interface 47

"about" box and splash screen 48
help files 48
menus and menu items 47
toolbar 48

user space 28, 30
user space, coordinates of 28

W
window, drawing into another 51
Windows utilities 68

206 Acrobat Core API Overview

Index

	Acrobat Core API Overview
	Documentation Roadmap
	Contents
	Preface
	Introduction
	Audience
	Assumptions
	How This Document Is Organized
	Related Documentation
	Conventions Used In This Document

	Core API Overview
	Ways to Integrate With the Acrobat Viewers
	Acrobat Core API
	Core API Objects
	Core API Methods
	Data Types
	Scalar Types
	Simple Types
	Complex Types
	Opaque Types
	Cos Objects

	Understanding Coordinate Systems
	User Space
	Device Space
	Translating between User Space and Device Space
	Machine Port Space

	Using Rectangles and Quadrilaterals
	Handling Exceptions
	Adding New Object Types
	Storing Private Data in PDF Files

	Core API Mechanics
	Host Function Tables
	Using HFTs
	HFT Servers
	Creating a New HFT
	Replacing Built-In Methods

	Interaction Between Plug-ins and the Acrobat Viewer
	Locating Plug-ins
	Handshaking and Initialization
	Exporting HFTs
	Importing HFTs and Registering for Notifications
	Initialization
	Unloading

	Callbacks
	Notifications
	Enumeration
	Handling Events
	Mouse Clicks
	Adjust Cursor
	Key Presses

	Adding Message Handling
	Plug-in Prefixes

	Acrobat and Reader Differences
	Changing the Acrobat Viewer User Interface
	Adding or Removing Menus and Menu Items
	Modifying the Toolbar
	Controlling the “About” Box and Splash Screen
	Placing Plug-in Help Files In a Standard Location

	Page View Layers
	Reducing Conflicts Among Plug-ins

	Plug-in Applications
	Controlling the Acrobat Viewers
	Drawing Into Another Window
	Indexed Searching
	Steps in the Acrobat Product’s Indexed Searching
	Extracting Text

	Providing Document Security
	Modifying File Access
	Creating New Annotation Types
	Accessing the Info Dictionary
	Adding Private Data To PDF Files

	Acrobat Support
	ASAtom
	ASCab
	ASCab Method Naming
	Handling Pointers
	ASCab Methods

	ASCallback
	ASExtension
	ASFile
	ASFileSys
	ASPathName
	ASStm
	ASText
	Configuration
	Errors
	Fixed-point Math
	Fixed-point Utility Macros
	Fixed-point Mathematics Methods
	Fixed-point Matrix Methods

	HFT Methods
	Memory Allocation
	Platform-specific Utilities
	Macintosh
	UNIX
	Windows

	Acrobat Viewer Layer
	General
	AVActionHandler
	AVAlert
	AVAnnotHandler
	AVApp
	AVCommand
	Invoking AVCommands Programmatically
	AVCommand Methods

	AVConversion
	AVCrypt
	AVDoc
	AVGrafSelect
	AVMenu
	AVMenubar
	AVMenuItem
	AVPageView
	AVSweetPea
	AVSys
	AVTool
	AVToolBar
	AVToolButton
	AVWindow

	Portable Document Layer
	General PD Layer Methods
	Metadata
	New Metadata Features in PDF 1.4
	Metadata APIs in Acrobat 5.0

	PDAction
	PDAnnot
	PDBead
	PDBookmark
	PDCharProc
	PDDoc
	Querying PDDoc Permissions
	PDDoc Methods

	PDFileSpec
	PDFont
	PDForm
	PDGraphic
	PDImage
	PDInlineImage
	PDLinkAnnot
	PDNameTree
	PDNumTree
	PDPage
	PDPageLabel
	PDPath
	PDStyle
	PDText
	PDTextAnnot
	PDTextSelect
	PDThread
	PDThumb
	PDTrans
	PDViewDestination
	PDWord
	PDWordFinder
	PDXObject

	PDFEdit—Creating and Editing Page Content
	Introduction
	Overview of PDFEdit
	Why PDFEdit?
	What is PDFEdit?
	PDFEdit Paradigm

	PDFEdit Classes
	Basic Classes
	PDEElement Classes
	PDEElement Attribute Classes

	Example
	Comparing PDFEdit to Other Core API Methods
	Classes
	Mapping Between PDF Operators and PDFEdit
	Page Contents Stream and PDFEdit Object List Correspondence
	Enumerating Page Objects
	Using PDFEdit versus PDWordFinder
	Using PDFEdit Versus PDPageAddCosContents
	Hit Testing

	Using PDFEdit Methods
	Reference Counting
	Matrix Operations
	Clip Objects and Sharing
	Marked Content
	Cos Objects and Documents
	XObjects and PDEObjects
	Resources
	Client Identifiers

	Guide to Page Creation
	Common Code Sequence
	Ways To Modify a Page’s Content

	Debugging Tools and Techniques
	Object Dump

	PDFEdit Methods
	Dump Methods
	General Methods

	PDEClip
	PDEColorSpace
	PDEContainer
	PDEContent
	PDEDeviceNColors
	PDEElement
	PDEExtGState
	Setting the Opacity of an Object
	PDEExtGState Methods

	PDEFont
	PDEForm
	PDEGroup
	PDEImage
	PDEObject
	PDEPath
	PDEPattern
	PDEPlace
	PDEPS
	PDEShading
	PDESoftMask
	PDEText
	PDEUnknown
	PDEXGroup
	PDEXObject
	PDSysEncoding
	PDSysFont

	PDSEdit—Creating and Editing Logical Structure
	Introduction
	Why Have Logical Structure?
	Logical Structure in a PDF Document
	The Structure Tree
	Navigating a PDF Document
	Extracting Data From a PDF Document
	Adding Structure Data To a PDF Document
	Using pdfmark to Add Structure Data to PDF

	PDSEdit Classes
	PDSTreeRoot
	PDSElement
	PDSAttrObj
	PDSMC
	PDSOBJR
	PDSClassMap
	PDSRoleMap

	Relationship of PDSEdit and PDFEdit
	Using the PDSEdit API: Examining Structure
	Structure Tree Root
	Structure Elements
	Traversing Elements in a Subtree
	Object Attributes
	Other Object Characteristics
	Element Types and the Role Map
	Classes and the Class Map

	Using the PDSEdit API: Creating Structure
	Structure Tree Root
	Structure Elements
	Adding Marked Content to an Element
	Adding an Object Reference to an Element
	Class Map
	Role Map

	Cos Layer
	Cos Objects: Direct and Indirect
	File structure
	Cos Objects in the Core API
	CosDoc
	CosObj
	CosArray
	CosBoolean
	CosDict
	CosFixed
	CosInteger
	CosName
	CosNull
	CosStream
	CosString
	Encryption/Decryption

	Handlers
	Action Handlers
	Annotation Handlers
	AVCommand Handlers
	Creating an AVCommand Handler
	Exposing AVCommands to the Batch Framework

	File Format Conversion Handlers
	File Specification Handlers
	Security Handlers
	Selection Servers
	Tools
	Window Handlers
	File Systems
	Progress Monitors
	Transition Handlers

	Document Security
	Encryption and Decryption
	Security Handlers
	Adding a Security Handler
	Security Handler Callbacks
	New Security Features in Acrobat 5.0
	Opening a File
	Acrobat’s Built-in Authorization Procedure
	Saving a File
	Setting a Document’s Security

	Implementation Examples
	Saving a File With a New Encryption Dictionary
	Opening an Encrypted File

	Utility Methods

	Handling Errors
	Exception Handlers
	Handling an Exception Later
	Returning From an Exception Handler
	API Methods That Raise Exceptions
	Exception Handler Caveats
	Don’t Use goto In a DURING...HANDLER Block
	Don’t Nest Exception Handlers In a Single Function
	Be Careful About Register Usage

	Changes For This Revision
	New Features in Acrobat 5.0
	New Core API Objects
	Other Changes in This Document

	Object Interrelationships
	Portable Document Format
	Relationship of Acrobat and PDF Versions
	Introduction To PDF
	PDF Objects
	File Structure
	Document Structure
	Page Contents

	Index

